Production risks and water use benefits of summer crop production on the south coast of Western Australia

Document Type

Article

Publication Date

6-24-2005

Journal Title

Australian Journal of Agricultural Research

ISSN

Print: 1836-0947 Electronic: 1836-5795

Keywords

Simulation, Deep drainage, Gorghum, Millet, Esperance, Wheat.

Disciplines

Agricultural Science | Agriculture | Agronomy and Crop Sciences | Climate | Hydrology | Soil Science | Water Resource Management

Abstract

Summer crops grown during the summer fallow in a Mediterranean-type climate have the potential to produce out-of-season biomass and grain, increase water use, and reduce deep drainage. The potential effects of growing grain sorghum on components of the water balance, sorghum biomass and grain production, and yield of subsequent wheat crops were investigated by simulation using APSIM and long-term climate data from the Esperance district. Sorghum was simulated as part of 3 systems: (1) as an opportunity crop following wheat harvest, (2) as a fallow replacement after pasture removal and before entering a cropping phase, or (3) as a fallow replacement after a failed or waterlogged winter crop. Simulations were conducted for the period 1957–2003 at Myrup (mean annual rainfall 576 mm), Scaddan (408 mm), and Salmon Gums (346 mm). Sorghum was assumed to have a similar rooting depth to wheat. In order to gain confidence in using APSIM for these investigations, tests were initially conducted against field data involving summer and winter crops in sequence and measurements of soil water dynamics. Data sets also varied in summer rainfall, species (forage sorghum, grain sorghum, Japanese millet), and soil type (deep sand, and medium and shallow duplex).

Overall, the simulations showed that incorporation of a sorghum crop increased transpiration by 10–30 mm/year, made the soil profile drier by a similar amount at wheat sowing, and consequently reduced deep drainage by 3–25 mm/year, depending upon cropping system and location. Long-term average drainage results were dominated by large episodes in wet years. The increased transpiration from the summer crop, although reducing drainage in wet years, could not eliminate drainage. Following wheat yields were reduced by an average of 200–400 kg/ha, corresponding to a reduction of 10% at wetter and 30% at drier locations. In the 2 fallow replacement systems, sorghum biomass was produced in nearly every simulated season. However, averaged over all seasons, sorghum grain production was much less reliable comprising only 10–20% of biomass. In the opportunity system, sorghum produced biomass in only 1 in 3 seasons at Salmon Gums and Scaddan and 1 in 2 at Myrup. Grain was produced in 1 in 5 seasons at all 3 locations, underlining the riskiness of this opportunity niche for summer crops in the Esperance district.

Although summer cropping was shown to result in modest reductions in deep drainage, it also comes at a cost to wheat production. The largest effects on drainage and most reliable biomass production were seen in the systems where the summer crop was grown following pasture removal or a failed (waterlogged) winter crop. This research has also shown that recent farmer and researcher experiences of summer cropping are likely to be more favourably biased towards prospects for summer cropping than indicated by long-term simulations because of their longer-term perspective.

Share

COinS
 

Digital Object Identifier (DOI)

https://doi.org/10.1071/AR04249