Establishment, survival, and herbage production of novel, summer-active perennial pasture legumes in the low-rainfall cropping zone of Western Australia as affected by plant density and cutting frequency

Document Type

Article

Publication Date

5-3-2013

Journal Title

Crop and Pasture Science

ISSN

Print: 1836-0947 Electronic: 1836-5795

Keywords

Australian native legumes, Bituminaria bituminosa var. albomarginata, Cullen spp., drought-tolerant perennial pastures, summer–autumn feed gap, survival, tedera

Disciplines

Agronomy and Crop Sciences

Abstract

Herbaceous perennial legumes that can provide forage in the summer–autumn dry period are urgently required in Mediterranean climates to complement annual pastures and the perennial legume lucerne (Medicago sativa). This study evaluated the establishment, survival, and herbage production of tedera (Bituminaria bituminosa var. albomarginata) and Cullen spp. native to Australia. Two experiments were replicated at Buntine (warmer site) and Newdegate (cooler site) in the low-rainfall cropping zone (<350 mm average annual rainfall) of Western Australia from June 2008 to September 2010. In the first experiment, established by transplanting seedlings, survival and herbage production of two accessions each of B. bituminosa and C. australasicum were studied under densities of 1, 2, 4, 8, and 16 plants/m2 with 0, 1, 2, or 3 cuts in summer–autumn in addition to a winter–spring cut. In the second experiment, established from seed, emergence and survival of several accessions of B. bituminosa, C. australasicum, and M. sativa were studied, along with C. pallidum and C. cinereum.

In the first experiment, B. bituminosa survived better than C. australasicum (70–80% v. 18–45%), especially at Buntine, but there was little impact of density or cutting frequency on survival. Plant death was highest during summer. Shoot dry weight (DW) accumulation varied greatly with site, year, and plant density. When rainfall was close to average, shoot DW was greater at Newdegate (B. bituminosa ≤7.4 t/ha, C. australasicum ≤4.5 t/ha) than at Buntine (≤2.3 t/ha), and both species produced much of their shoot DW in summer–autumn (e.g. 6 t/ha for B. bituminosa and 3 t/ha for C. australasicum at Newdegate). An early-summer cut reduced the DW that could be harvested later in summer–autumn. In the second experiment, emergence of B. bituminosa was either similar to, or higher than, emergence of the other species, being 43% at Buntine and 44% at Newdegate. Survival of B. bituminosa, compared with M. sativa, was similar at Buntine (13%) and slightly lower at Newdegate (14%). Emergence and survival of Cullen spp. varied among species and accessions, with survival of the best performing accession of C. australasicum (SA4966) similar to that of B. bituminosa and M. sativa at both sites. We conclude that B. bituminosa shows promise as a perennial summer forage for low-rainfall zones, with a density of 8–16 plants/m2 and cutting frequency of 3 cuts/year (i.e. cut twice in summer–autumn), while C. australasicum and C. pallidum warrant further study.

Share

COinS
 

Digital Object Identifier (DOI)

https://doi.org/10.1071/CP12398