Rain, rain, gone away: Decreased growing-season rainfall for the dryland cropping region of the south-west of Western Australia

Tim Scanlon, Department of Primary Industries and Regional Development, Western Australia
Greg Doncon, Department of Primary Industries and Regional Development, Western Australia

Abstract

The shift in Indian Ocean sea surface temperatures in 1976 led to a change in rainfall for the broad-scale winter annual grain cropping and pasture region in the south-west of Western Australia (the WA wheatbelt). Agriculture in the eastern part the WA wheatbelt was particularly sensitive to the change in rainfall because it is a marginal area for agronomic production, with low rainfall before changes in sea surface temperature. A second shift in sea surface temperature occurred in 2000, but there has been no analysis of the resulting impact on rainfall in the eastern WA wheatbelt. An analysis of rainfall pre- and post-2000 was performed for sites in the eastern WA wheatbelt in three groups: 19 sites in the west, 56 central, and 10 east. The analysis found a decline in growing-season rainfall (i.e. April-October), especially during May-July, post-2000. Rainfall declines of 49.9 mm (west group), 39.1 mm (central group) and 28.0 mm (east group) represented respective losses of 20.1%, 17.4% and 14.2% of growing-season rainfall. Increases in out-of-season rainfall in the respective groups of 31.0, 33.6, and 50.7 mm (57.8%, 60.8% and 87.6%) meant that annual rainfall changes were smaller than growing-season losses. The west and central groups lost 17.5 and 6.16 mm annual rainfall, whereas the east group gained 15.6 mm. Analysis of wheat yield indicated reductions of 13.5% (west) and 9.90% (central) in the eastern WA wheatbelt the small group of east sites had a potential yield gain of 8.9% arising from the increased out-of-season rainfall. Further, increased out-of-season rainfall will exacerbate weed and disease growth over the summer fallow. © 2020 CSIRO.