Farm-scale nitrogen, phosphorus, potassium and sulfur balances and use efficiencies on Australian dairy farms

Document Type


Publication Date


Journal Title

Animal Production Science


nutrient balance, nutrient use efficiency, nitrogen, phosphorus, potassium, sulphur, dairy


Efficient and effective nutrient management decisions are critical to profitable and sustainable milk production on modern Australian dairy farms. Whole-farm nutrient balances are commonly used as nutrient management tools and also for regulatory assessment on dairy farms internationally, but are rarely used in Australia. In this study, nitrogen (N), phosphorus (P), potassium (K), and sulfur (S) imports and exports were measured during a standardised production year on 41 contrasting Australian dairy farms, representing a broad range of geographic locations, milk production, herd and farm size, reliance on irrigation, and soil types. The quantity of nutrients imported varied markedly – with feed and fertiliser generally the most substantial imports – and were principally determined by stocking rate and type of imported feed. Milk exports were the largest source of nutrient exports. Nitrogen balance ranged from 47 to 601 kg N/ha.year. Nitrogen-use efficiency ranged from 14 to 50%, with a median value of 26%. Phosphorus balance ranged from –7 to 133 kg P/ha.year, with a median value of 28 kg P/ha. Phosphorus-use efficiencies ranged from 6 to 158%, with a median value of 35%. Potassium balances ranged from 13 to 452 kg K/ha, with a median value of 74 kg K/ha; K-use efficiency ranged from 9 to 48%, with a median value of 20%. Sulfur balances ranged from –1 to 184 kg S/ha, with a median value of 27 kg S/ha; S-use efficiency ranged from 6 to 110%, with a median value of 21%. Nitrogen, P, K and S balances were all positively correlated (P < 0.001) with stocking rate and milk production per ha. Poor relationship between P, K and S fertiliser inputs and milk production from home-grown pasture reflected the already high soil fertility levels measured on many of these farms. The results from this study demonstrate that increasing milk production per ha will be associated with greater nutrient surpluses at the farm scale, with the potential for greater environmental impacts. We suggest that simplified and standardised nutrient balance methodologies should be used on dairy farms in Australia to help identify opportunities for improvements in nutrient management decisions and to develop appropriate industry benchmarks and targets.