Egg shell quality

R J. Bishop

Follow this and additional works at: https://library.dpird.wa.gov.au/journal_agriculture4

Part of the Inorganic Chemistry Commons, Nutrition Commons, and the Poultry or Avian Science Commons

Recommended Citation
Available at: https://library.dpird.wa.gov.au/journal_agriculture4/vol7/iss9/7

This article is brought to you for free and open access by the Agriculture at Digital Library. It has been accepted for inclusion in Journal of the Department of Agriculture, Western Australia, Series 4 by an authorized administrator of Digital Library. For more information, please contact library@dpird.wa.gov.au.
EGG SHELL QUALITY

By R. J. BISHOP, B.Sc. (Agric.), Poultry Adviser

Recent overseas work and local industry developments indicate that the calcium content of feed for laying hens in Western Australia should be increased to achieve satisfactory egg shell strength. Age, temperature and breeding are other important influences on egg shell quality.

WEAK-SHELLED eggs have always been a problem to the poultry industry, but the problem has become more acute with modern developments.

In discussing this problem, it is convenient to group the influences on egg shell quality into four main classes—physiological, nutritional, environmental and genetic factors. Of the many items considered in the review, those which most affect the egg producer are briefly discussed below.

Age
Towards the end of their laying year, pullets lay thinner-shelled eggs. This physiological effect of age is the major obstacle to maintaining shell quality in the egg industry today. With the modern trend towards breeding birds for long periods of high production, shell strength may become a problem before the flock’s rate of lay has fallen low enough to warrant selling.

Although increases in calcium intake improve shell strength, high intakes will not prevent the fall in shell quality associated with ageing. Even if hens are well...
Cracked egg shells are likely to be more prevalent in cage-laying houses than floor-laying houses, hence there is a greater need for eggs to have stronger shells in cage plants. It is now recommended that the level of calcium in the diet of laying hens should be increased to 3.0 per cent. to improve shell strength.

In the past the general practice has been to feed 2.25 per cent. calcium in all mash diets. However, recent research has shown that this level is inadequate for maximum shell strength and calcium contents higher than 2.25 per cent. improve shell quality.

High producing birds need between three and four grams of calcium per bird per day to achieve maximum shell strength; 3 per cent. calcium in the diet should ensure this rate of intake.

Nutrition

One of the most important factors influencing egg shell strength or thickness is the calcium supply in the layer's feed which is readily controlled by the poultry farmer.

Calcium is the most important nutrient influencing egg shell quality. Some of the factors which affect the calcium requirements of a laying hen are its size, age, breed or strain, feed efficiency and rate of lay. The energy, protein and phosphorus levels in feed and the temperature also affect the layer's calcium needs.

Other nutrients which influence egg shell quality are zinc, manganese, vitamin D and possibly vitamin C when hot weather prevails.

Recent overseas work has shown that layers require a higher level of calcium than was previously thought adequate.

Temperature

Heat has an important influence on egg shell quality, especially during summer when temperatures average over 70 degrees F. for long periods. Temperatures consistently above 70 degrees have been found to reduce egg shell thickness.

Experiments on dietary calcium levels conducted at temperatures above 70 degrees have clearly shown that calcium levels higher than 2.25 per cent. have a beneficial effect on egg shell strength.

High temperatures affect shell quality more severely when the humidity is also high.
Breeding

Perhaps the best way of overcoming the problem of thin-shelled eggs is by breeding for better shell quality. This is particularly important when trying to eliminate the fault of weaker egg shells from older pullets.

Breeder's selecting for shell quality must take account of modern trends towards smaller body size, greater feed efficiency, high production rates and longer production life which all put a greater strain on the shell-forming organs of the layer.

However, because egg shell quality traits are not strongly inherited, special breeding methods must be used to make these improvements and genetic progress is only slow.

BOOKS FOR FARMERS

THE following books on agriculture, recently published and obtainable to order from most booksellers, have been added to the stock of the Library Board of W.A. and may be borrowed freely from any public library associated with the Board, or consulted at the State Library of Western Australia.

Poultry

BROODING CHICKS WITH INFRARED LAMPS: Leaflet No. 397 issued by the United States Department of Agriculture. [Washington (D.C.), 1955].

POULTRY FARMING; prepared by the Poultry Section in conjunction with the veterinary Staff of the Department of Agriculture of Victoria. 10th ed. Melb., [1961].

Livestock

F.R.S. AID ON THE FARM, WITH NOTES ON THE DISEASES OF CATTLE, PIGS AND SHEEP; by P. West. Lond., 1956.

MASTITIS IN CATTLE: Bulletin A.D. 73 issued by the Division of Animal Industry of the New South Wales Department of Agriculture. [Syd.], 1965.

General

Bee-Keeping

THE WORLD OF BEES; by M. Hoyt. Lond., 1966.

417
Veterinary breakthrough!

BLOAT BEATEN

Identical twin cows fed succulent lucerne

now you can turn out on high production pasture all day, with no danger from bloat.

BLOAT GUARD*, the product of 8 years' intensive research, outdates other methods of bloat prevention.

- BLOAT GUARD* in the morning feed stops bloat danger all day
- readily accepted by dairy animals

- fully effective every time, every day of the bloat season —no fall-off in effectiveness like antibiotics
- not present in milk
- no pasture spraying
- no electric fences

Write for more information to

Smith Kline and French Laboratories
Warringah Road, French's Forest,
New South Wales (Australia) Limited,
New Zealand distributor:
William H. Terry and Co. Ltd., C.P.O.
Box 294, Wellington.

BLOAT GUARD* and BLOAT GUARD* DRENCH are available from your veterinary supplier.

Please mention the "Journal of Agriculture of W.A.," when writing to advertisers