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1 Executive summary 
Seismic surveys have the potential to affect marine life, including commercially and 
recreationally important finfish and invertebrate species and their prey.  There is, however, 
considerable uncertainty around the degree of impact and relevant pressure-response 
pathways across the different taxonomic groups.   

In order to gain a contemporary understanding of the seismic activity-related risks and 
potential impacts on finfish and invertebrates in waters off Western Australia, an assessment 
of risks posed by seismic surveys on finfish and invertebrates was facilitated by the Fisheries 
Division of the Department of Primary Industries and Regional Development (DPIRD) on 
December 7th, 2016.  This took the form of an ecological risk assessment (ERA) workshop 
attended by 23 external stakeholders. The risk assessment involved estimating the level of 
risk associated with seismic surveys on the survival and/or the reproductive capacity of 
marine finfish and invertebrates individuals closest to the seismic source, for a period of 12 
months directly following exposure.  

The risk analysis methodology utilised for the 2016 risk assessment was based on the global 
standard for risk assessment and risk management (AS/NZS ISO 31000). This methodology 
utilised a consequence-likelihood analysis, and involved the examination of the magnitude of 
potential consequences from seismic surveys and the likelihood that those consequences will 
occur.   

During the workshop, risk scores were allocated based on the collective knowledge and 
expertise of participants present at the workshop.  This report summarises the outcomes of 
the risk assessment workshop and documents the assumptions discussed and agreed, the risk 
ratings allocated and the justifications for risk scores and ratings.   

Overall the risk assessment found that the greater the intensity of sound and shallower the 
depth of water, the greater the assigned risk.  In waters <250m, the risk ratings ranged from 
‘negligible’ to ‘severe’ depending on depth, resource type and seismic intensity.  The 
organisms classified as most at risk from seismic impacts were immobile invertebrates (e.g. 
molluscs) whereas pelagic fish were rated as the least at risk.  For all fish and invertebrates, 
the impacts of seismic surveys, in waters deeper than 250m was assessed as acceptable (i.e. 
‘moderate’ or lower).   

This risk assessment on the impacts of seismic activity was undertaken at the level of 
individual adult finfish and invertebrate organisms closest to the seismic source.  It represents 
the first step in estimating the broader impacts seismic surveys may pose at larger spatial 
scales.  To assess the impacts at the level of populations, management units or fisheries a 
guidance statement is currently being developed by Fisheries.  This will provide additional 
information for proponents when submitting applications for future surveys.  It is anticipated 
the new guidance statement will be finalised in 2018. 
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2 Background 
Marine seismic surveys are a prospecting tool used by the petroleum industry for locating 
favourable geological formations for determining undersea oil and gas deposits (Miller and 
Crisps 2013).  Surveys typically involve the use of airgun arrays which are towed behind a 
vessel and produce high intensity, low-frequency sounds at regular intervals.  Long strings 
(kilometres) of hydrophones pulled behind the air gun array detect the reflected signals. 
These data provide information about the seafloor and its underlying geological formations 
(Anon 2011, Carroll et al. 2016, Popper and Hastings 2009).   

Seismic surveys have the potential to affect marine life, including commercially and 
recreationally important finfish and invertebrate species, their prey and the business activities 
of the fishers who harvest these aquatic resources.  All stakeholders have access to aquatic 
resources, as long as the impacts of that access from all users of the marine environment are 
minimised and acceptable. The Department of Primary Industries and Regional Development, 
Fisheries Division (Fisheries) is responsible for: (i) delivering ecologically sustainable 
management and development of the State’s aquatic resources; and (ii) the development of 
strategies and plans for the conservation of aquatic resources and the protection of aquatic 
ecosystems. The Offshore Constitutional Settlement 1995 (OCS) extends these 
responsibilities to Commonwealth waters off Western Australia. These responsibilities are 
legislated at the State level in WA under the Aquatic Resources Management Act 2016 
(ARMA) which is set to replace the Fish Resources Management Act 1994 (FRMA) and the 
Pearling Act 1990 (Pearling Act) in the near future.   

In State waters, marine organisms not covered by WA legislation are protected under the 
Biodiversity Conservation Act 2016 administered by the Department of Biodiversity, 
Conservation and Attractions (DBCA).  In Commonwealth waters listed marine organisms 
are protected under the Environment Protection and Biodiversity Conservation Act (EPBC) 
1999 administered by the Department of Environment and Energy. 
 
In State waters, the regulation of seismic surveys is managed through the Petroleum 
(Submerged Lands) (Environment) Regulations 2012 and the Petroleum and Geothermal 
Energy Resources (Environment) Regulations 2012 administered by the Western Australian 
Department of Mines, Industry, Regulation and Safety (DMIRS).  In Commonwealth waters, 
the Offshore Petroleum and Greenhouse Gas Storage (Environment) Regulations 2009 apply, 
as administered by the National Offshore Petroleum Safety and Environmental Management 
Authority (NOPSEMA).  Prior to undertaking seismic surveys, titleholders are required to 
have an environment plan (EP) approved by DMIRS in State waters or accepted by 
NOPSEMA in Commonwealth waters.   
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With respect to the evaluation and mitigation of environmental impacts and risks, EPs are 
required to: 

• provide a comprehensive description of the proposed activities; 

• describe the existing environment (including social, economic and cultural features) 
and include details of its values and sensitivities; 

• contain details of the environmental impacts and risks; 

• include an evaluation of all impacts and risks, appropriate to the nature and scale of 
the activity; and 

• provide details of the control measures that will be used to reduce the impacts and 
risks of the activity to levels that are ‘as low as reasonably practical’ (ALARP) and 
acceptable.  This includes setting appropriate environmental performance 
objectives/outcomes performance standards and measurement criteria).   

Approval or acceptance of EPs also requires the regulator to be satisfied that there has been 
an appropriate level of consultation with relevant authorities, persons and organisations.  
Titleholders are required to provide relevant persons with sufficient information and time to 
allow them to make an informed assessment of the possible consequences of the activity on 
their functions, interests or activities.  Fisheries currently provides titleholders with generic 
advice in the form of a guidance statement (DoF 2013)1, and with proposal-specific advice as 
part of the consultation process with respect to EPs as set out above.  In addition, titleholders 
are directed to consult directly with potentially affected fishers, the Western Australian 
Fishing Industry Council Inc. (WAFIC) and other representative groups, such as the Pearl 
Producers Association, where relevant.    

Fisheries manages aquatic resources according to a risk based approach, in accordance with 
the principles of Ecologically Sustainable Development (ESD) and Ecosystem Based 
Fisheries Management (EBFM). This risk based approach considers all ecological resources, 
the various users of these resources, and a broad range of community values in determining 
an appropriate level of management to ensure an acceptable level of risk is achieved. 
Accordingly, the Fisheries expectations as to how titleholders assess the impacts, and the 
acceptability of those impacts, will vary according to the level of risk.  

To improve the understanding of risks associated with seismic survey activities to fish and 
invertebrates, Fisheries facilitated a risk assessment workshop involving a broad range of 
stakeholders on December 7th 2016 (Appendix 1).  The risk analysis methodology was based 
on the global standard for risk assessment and risk management (AS/NZS ISO 31000). This 
methodology utilises a consequence-likelihood analysis, which involves the examination of 
the magnitude of potential consequences from seismic survey-related activities and the 
likelihood that those consequences will occur. 

                                                 
1 Note that Fisheries has commenced a review of its 2013 Guidance statement on undertaking seismic surveys in 
Western Australian waters. 
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2.1 Scope and purpose 
The scope of this risk assessment was to estimate the level of risk, associated with seismic air 
gun surveys on the survival and/or the reproductive capacity of marine invertebrate and 
finfish individuals on the seismic acquisition line (i.e. directly underneath the path of the 
vessel) up to 12 months after seismic exposure.  The scope does not extend to risks of impact 
on a larger scale (such as those on the level of regional aggregations, fisheries, management 
units or populations), nor does it consider cumulative impacts (i.e. multiple surveys over the 
same area) both, which will be addressed in a new Fisheries guidance statement, due for 
completion in 2018.  This risk assessment also does not assess the impacts of seismic surveys 
on other organisms, e.g. marine mammals, sharks and rays, reptiles, zooplankton and corals.  
Nor does it assess the impacts of seismic surveys on fisheries – i.e. right of way issues and 
immediate impacts on catches.   

This report summarises the outcomes of Fisheries’ risk assessment workshop.  The report 
documents the assumptions that were discussed and agreed (Sections 3.2 and 3.3), documents 
the risk ratings allocated during the workshop and captures the justifications for risk scores 
and ratings (Section 4).   

The report has been thoroughly reviewed, with an earlier draft sent to stakeholders to provide 
comments and suggestions, to ensure that it accurately documented the workshop outcomes.  
Stakeholder’s comments were considered in the final document and a report summarising a 
response to submissions provided to stakeholders who provided comment (Appendix 2).  It 
should be noted that no changes were made to the risk scores as these reflected the consensus 
position as agreed on the day.   

The outcomes of the risk assessment will inform Fisheries advice and guidance provided to 
proponents and the regulators in relation to proposed seismic surveys in both State and 
Commonwealth waters.  The outcomes of this risk assessment will also be used in the 
development of the new Fisheries guidance statement.    

2.2 Impacts of seismic surveys to marine finfish and invertebrates 
Over the past two decades the number of experimental studies investigating the impact of 
seismic sound on marine species has significantly increased with the findings of these studies 
synthesized in several recent reviews, i.e. Carroll et al. (2017) and Fisheries (2017).  It is 
recommended that these two reviews are read in conjunction with this report, including the 
detailed appendices within both reports which tabulate all seismic related research.  A list of 
potential impacts of seismic surveys on marine finfish and invertebrates is provided in Tables 
2-1 & 2-2.   

The impacts of seismic sound on marine species depends on the properties of the sound, the 
distance to the source and the physiological properties of the receptor (e.g. the absolute 
sensitivity and range of spectral hearing) (Popper and Hawkins 2012, Slabbekoorn et al. 
2010).  With respect to the properties of the transmitted sound wave, four properties need to 
be considered with respect to the impact of seismic sound on marine life, i.e.: relative 
pressure, frequency, particle motion and duration (i.e. impulse) (Carroll et al. 2017). 
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Extrapolation of experimental research to natural settings is challenging and needs to be done 
with some caution.  Most experimental research has involved either laboratory or caged 
experiments or a focus on clearly visible impacts manifesting shortly after exposure. Impacts 
due to non-lethal effects (short or long-term) and cumulative impacts due to the confounding 
effects of multiple stressors (e.g. multiple exposure to seismic arrays, climate change or 
dredging) are poorly understood.  All of these factors need to be interpreted in the context of 
realistic exposure scenarios, experimental limitations and field conditions.  The lack of 
standard terminology and measurements also makes comparisons among studies challenging 
(Carroll et al. 2017). 

Table 2-1  Potential impacts of seismic surveys on invertebrates 

Life 
Stage 

Impact type Potential impact of seismic survey  

Adults 
and 
juveniles 

Mortality Death up to 12 months after survey 
Physical Impacts Auditory system damage (e.g. statocysts) 

Internal organ damage  
Physiological Impacts Physiological impacts (e.g. metabolic rate) 

Immuno compromisation/susceptibility to disease 
Behavioural Impacts Temporary stunning  

Mobility (e.g. tail extension, ability to right 
themselves) 
Startle or flight response/erratic swimming or burying 
Effects on breeding behaviour 
Acoustic masking 

Cumulative impacts and 
mortality 

Cumulative effect of all physical and behavioural 
impacts on direct and indirect mortality 

Cumulative impacts and 
catchability 

Cumulative effect of all physical and behavioural 
impacts on catchability of fish (e.g. reduction in catch 
rates due to migration out of the area) 

Larvae 
and eggs 

Physical Impacts Yolk displacement/membrane perturbation 
Hearing/movement detection (e.g. statocysts) 
Body malformations (larvae) 
Rates of egg/larvae development 

Behavioural Impacts Swimming behaviour (larvae) 
Acoustic marking (larvae) 

Cumulative impacts and 
mortality 

Cumulative effect of all physical and behavioural 
impacts on direct and indirect mortality 
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Table 2-2   Potential impacts of seismic surveys on finfish 

 
Life Stage Impact type Potential impact of seismic survey 

Adults and 
juveniles 

Mortality Death up to 12 months after survey 
Physical Impacts Lateral line damage 

Auditory system damage 
Damage to internal organs (e.g. swim bladder) 

Physiological impacts Increased serum cortisol, glucose & lactate 
Hearing loss or hearing threshold shifts 
Elevated ventilation response 

Behavioural Impacts Temporary stunning  
Startle or flight response/erratic swimming 
Change in vertical position 
Change in horizontal position 
Change in swimming behaviour 
Effects on breeding behaviour  
Acoustic masking 
Displacement (i.e. residency change) 

Cumulative impacts & 
mortality 

Cumulative effect of all physical and behavioural 
impacts on direct and indirect mortality and 
reproductive capacity 

Cumulative impacts and 
catchability 

Cumulative effect of all physical and behavioural 
impacts on catchability of fish (e.g. reduction in catch 
rates due to migration out of the fishing area, collapse of 
aggregations) 

Larvae and 
eggs 

Physical Impacts Yolk displacement/membrane perturbation 
Disruption to hearing/movement detection  
Body malformations (larvae) 
Changes in egg/larvae development 

Behavioural Impacts Changes in swimming behaviour (larvae) 
Acoustic masking 

Cumulative impacts and 
mortality 

Cumulative effect of all physical and behavioural 
impacts on direct and indirect mortality 
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3 Risk Assessment methodology 
Risk assessments offer a means to filter and prioritise various management issues and have 
been used in fisheries management in Australia for over a decade (Fletcher et al. 2002).  The 
risk analysis methodology utilised for the seismic risk assessment was based on the global 
standard for risk assessment and risk management (AS/NZS ISO 31000), which has been 
adopted for use in a fisheries context (see Fletcher 2005 & 2015, Fletcher et al. 2002).  

The risk assessment process is summarised Figure 3-1.  The first stage, ‘Establishing the 
Context’ specifies the definition of risk, identifies which species will be assessed and 
delineates the geographical boundaries and the timeframe for the risk assessment (Section 
3.2).  

 

Figure 3-1.  Position of risk assessment within the risk management process (modified from 
SA 2013) 

Risk identification involves the process of recognising and describing risks, which includes 
the identification of risk sources and their causes (Section 3.3).  Once the risks are identified 
they are scored by the risk analysis process.  This involves examining each identified risk, the 
potential consequences (impacts) associated with each and the likelihood (probability) of 
each particular level of consequence actually occurring (Section 4).  The combination 
produces a risk score. 

Risk evaluation is ‘the process of comparing the results of risk analysis against risk criteria to 
determine whether the level of risk is acceptable or tolerable’ (AS/NZS ISO 31000 and ISO 
Guide 73).  For the purposes of this risk assessment the term acceptable means an acceptable 
impact to adult finfish and invertebrate individuals which are directly on the seismic survey 
line.  When a seismic survey is considered to pose a moderate or higher risk to individuals, 
the risk will be further assessed at a larger spatial scale, e.g. population, management unit, 
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fishery or other appropriate spatial scale.  The Fisheries guidance statement will provide 
information on how risk is undertaken on a larger scale. 

Risk treatment typically involves management and mitigation strategies to reduce the risk to 
more acceptable levels.  Risk treatment will occur at larger spatial scales through mitigating 
risk to groups of organisms, (e.g. avoiding key spawning grounds).  Through mitigation and 
management, risk can potentially be reduced to a level that is both ALARP and acceptable as 
defined by the regulatory authorities (DMIRS and/or NOPSEMA). Further information on 
risk reduction strategies will be provided in the Fisheries guidance statement. 

3.1 Consultation 
An important part of the risk assessment and risk management process is achieving an agreed 
position among stakeholders on risk scores through communication and consultation.  For the 
seismic risk assessment the consultation process involved: 

• Prior to the risk assessment workshop distribution of:  
o A literature review examining the potential effects of seismic air gun surveys 

on marine finfish and invertebrates in WA (Fisheries 2017) 
o A background document explaining the risk assessment process and 

identification of issues to score for risk 
o The most recent peer-reviewed literature on the risk assessment process 

(Fletcher 2015) 
• A risk assessment workshop with the participation of a broad range of stakeholders 

(See Appendix 1).     
• Production of a risk assessment report (this report) summarising the results of the 

workshop.  An earlier draft of this report was subject to stakeholder consultation. All 
comments were considered by Fisheries and stakeholders who provided comment 
were sent a response to submissions.   

3.1.1 Workshop presentations 
At the start of the workshop several presentations were made to provide background 
information: 

• Dr Shaun Meredith, DPIRD, Fisheries, Introduction 
• Mr Andrew Long, Petroleum Geo-Services – Seismic survey overview 
• Professor Robert McCauley, Curtin University, Seismic surveys and biological impact 

mechanisms 
• Dr Jayson Semmens, University of Tasmania, Research Outcomes: Impacts of seismic 

sound to southern rock lobster and commercial scallops 
• Petrina Raitt Green Light Environmental, APPEA, Outcomes of the review: 

Underwater Sound and Vibration from Offshore Petroleum Activities and their 
Potential Effects on Marine Fauna: An Australian Perspective   
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3.2 Establishing the context 
For the purpose of this assessment the term ‘risk’ relates to the potential direct and indirect 
impacts on an individual’s survival or ability to breed as a result of being in the direct 
acquisition line of a seismic survey.  Risk was assessed for impacts on adult individuals, due 
to a lack of information and knowledge on potential impacts to egg or larval stages. The 
timeframe for a potential impact was agreed to be up to 12 months after a survey, which 
typically allows sufficient time for one reproductive cycle.   

The geographical extent of the risk assessment was for all State and Commonwealth waters 
off the coast of WA.  

The scope of this Risk Assessment was for the next five years through until December 2022.  
It is necessary to periodically update the risk assessment, at least every five years, in order to 
take into account new information and research. For example, the risk assessment will need 
to be updated once the outcomes of a recently initiated three year research program, led by 
the Australian Institute of Marine Science (AIMS) on the effects of seismic surveys on 
marine life in northern WA is completed.     

3.3 Issue identification (Component trees) 
One of the first steps in the workshop process was the identification of relevant issues to be 
assessed for risk.  This step is equivalent to the ‘hazard identification’ process used in most 
risk assessment procedures.  In this assessment issue identification was assisted using the 
component tree approach (Fletcher et al. 2002) based on: 

• Fisheries literature review on impacts of seismic activities on marine finfish and 
invertebrates (Fisheries 2017); 

• Consultation with industry and external stakeholders during the workshop on 7th 
December 2016. 

The identified issues were assessed for risk for each situation within a matrix of categories 
covering three major areas, i.e. aquatic resource type, water column depth and seismic sound 
intensity. 
 

1. Aquatic resource type 

Currently information on impacts to marine species is limited and nor is it logical or feasible 
to examine impacts to all species.  Therefore risks associated with seismic surveys were 
assessed based on four fisheries-relevant categories of aquatic resource:  

• Invertebrates, mobile 
• Invertebrates, immobile 
• Finfish, demersal 
• Finfish, pelagic  
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2. Water column depth 

Risks of impact on marine organisms are also strongly dependent on the proximity of the 
receptor to the source.  For simplification, it was agreed to estimate risk levels for receptors at 
four specific depths, broadly reflecting different habitat types and logistical constraints for 
seismic surveys, i.e.≥20m, 50m, 100m and >250m.  These depth categories are indicative of 
seismic exposure as in reality depth is a continuum and exposure is proportional to the 
distance from the source.      

3. Seismic source strength 

For the purposes of this risk assessment, risk based was on three different seismic array 
volumes of <2000 in3, 2000-4500 in3, and ≥4500 in3, and an average number of shots of 50-
70 per km.  These are representative parameters used during seismic surveys by oil and gas 
companies in WA.  The volume of the air gun array is proportional to the level of sound 
produced and is indicative of the likely intensity experienced by a marine organism (IAOGP 
& IAGC 2011, McCauley et al. 2016).  It was assumed that during a seismic survey an 
individual organism remains stationary (i.e. does not flee) and is positioned directly in the 
path line of the vessel, thus experiencing numerous pulses with varying degrees of intensity 
as the vessel approaches, passes overhead and moves further away2. 

Seismic surveys can also affect organisms through particle motion.  Instruments to accurately 
measure particle motion have only recently become practical to use and analyse.  In the 
absence of such measurements, it is common to use sound pressure (or in this case the 
volume of the array) as a proxy for particle motion as there is a correlation between the two 
(Fitzgibbon et al. 2017).   

                                                 
2 Note the seabed environment also affects sound exposure; however, this information is not available 
throughout all WA marine areas and was not used in this assessment.    
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3.3.1 Component tree 
The workshop involved assessing risk for each combination of categories, for example the 
effects of seismic surveys was assessed for each aquatic resource, each depth category and 
for each sound source intensity i.e. array volume (Figure 3-2). 

\  

Figure 3-2   Component tree/Diagram illustrating how risk was assessed for each combination 
of resource, air gun volume and depth.   

3.4 Risk Assessment Process and Reporting 
The risk assessment process assists in separating minor risks from major risks.  It also helps 
to identify key species present within the survey area that may be more vulnerable to seismic 
impacts and for which: (i) impacts on larger spatial scales (e.g. at the level of the population 
or management unit) may need to be evaluated; and/or (ii) mitigation and management 
measures need to be defined.   

Once the components and issues were identified for seismic activities, the process of 
evaluation was undertaken using the ISO 31000-based qualitative risk assessment 
methodology.  This methodology utilised a consequence-likelihood analysis, which involved 
the examination of the magnitude of potential consequences from seismic activities and the 
likelihood that those consequences will occur (Fletcher 2015). Consequence and likelihood 
analyses range in complexity, in this assessment a 4 x 4 matrix was used (Table 3-1 and 
Table 3-2).  Scoring involved an assessment of the likelihood that each level of consequence 
actually occurring or is likely to occur.  The agreed scores for each of the consequence and 
likelihood levels were then multiplied to determine the risk score, i.e. Risk = the highest 
Consequence × Likelihood (Table 3-3).  
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Table 3-1   Consequence levels 

Resource – measured at an individual level 

1. Indirect* effects resulting in negligible level of mortality and/or effect on reproductive 
capacity (<2% of individuals)  

2. Indirect and/or direct* effects resulting in 'low' level of mortality and/or effect on 
reproductive capacity (2-10% of individuals)  

3. Direct and/or indirect effects resulting in 'moderate' level of mortality and/or effect on 
reproductive capacity (10-40% of individuals)  

4. Direct effects resulting in 'large' level of mortality and/or effect on reproductive capacity 
(>40% of individuals affected)  

 

Table 3-2   Levels of likelihood  

Likelihood of each consequence over the next five years based the assumption impacts on 
mortality and/or reproductive capacity will occur within 12 months of seismic exposure.  
(Note: If not measurable, Likelihood Level is essentially 0) 

1. Remote – Never heard of but not impossible here (< 5 % probability) 

2. Unlikely – May occur here but only in exceptional circumstances (5-30%) 

3. Possible – Clear evidence to suggest this is possible in this situation (30-50%) 

4. Likely – It is likely, but not certain, to occur here (50-100%) 

* Indirect effects relate to behaviour changes that lead to death or reduced reproductive 
capacity through increased predation, loss of prey access, disease etc.  Direct effects relate to 
physical and/or physiological impacts that lead to death or reduced reproductive capacity  
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Table 3-3.  Standard Consequence — Likelihood Risk Matrix (based on AS 4360 / ISO 31000; 
adapted from Fletcher 2015) 

  Likelihood 

  Remote 
(1) 

Unlikely 
(2) 

Possible 
(3) 

Likely 
(4) 

Co
ns

eq
ue

nc
e 

Minimal 
(1) 

1 2 3 4 

Moderate 
(2) 

2 4 6 8 

High 
(3) 

3 6 9 12 

Major 
(4) 

4 8 12 16 

 
 
Table 3-4  Risk levels applied to assets (modified from Fletcher 2015) 

Risk 
Category / Level 

Description 

1 
Negligible 

Acceptable: 
• Not an issue 

2 
Low 

Acceptable: 
• No assessment of impacts at the population level for key 

species required. 
• No specific control measures needed. 

3 
Moderate 

Acceptable; 
• Assessment of impacts at the population level for key 

species required. 
• Risk mitigation and control measures potentially required 

4 
High 

Below acceptable; 
• Assessment of impacts at the population level for key 

species required. 
• Risk mitigation and risk control measures likely to be 

required 

5 
Severe 

Well below acceptable; 
• Assessment of impacts at the population level for key 

species required. 
• Risk mitigation and risk control measures very likely to 

be required 
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The formal risk analysis was undertaken at a stakeholder workshop held on December 7th 
2016 at the WA Fisheries and Marine Research Laboratories in Hillarys, Perth. Stakeholders 
invited to the workshop included representatives from Australian Petroleum Production and 
Exploration Association (APPEA), the Oil and Gas Industry, the Western Australian Fishing 
Industry Council, the Pearl Producers Association, Recfishwest, the Australian Institute of 
Marine Science, Geoscience Australia and various research institutes throughout Australia 
including Curtin University and University of Tasmania (Appendix 1). Workshop 
participants estimated the risk level for each issue, based on the judgements of participants at 
the workshop, who collectively were considered to have appropriate expertise in the subject 
areas being assessed.   

A risk score calculated for each combination of resource, depth and sound source was 
assigned one of five risk categories: Negligible (blue), Low (green), Medium (yellow), High 
(orange) or Severe (Red) (Table 3-4). The discussion and justification including any 
disagreements for classifying issues at each risk level was documented at the workshop and 
formed the basis of this report.   

For each aquatic resource the report is structured as follows: 

• Table providing risk scores and risk levels as scored by participants in the workshop 
• Workshop discussions and justifications for scores 
• Summary of research referred to in workshop discussions.   
• Other research on seismic impacts 

During the workshop risk scores were primarily based on the effects of seismic sound on 
Australian species (Day et al. 20163, McCauley et al. 2000 & 2003a, Miller and Crisp 2013).  
To provide information and context the section “Summary of research referred to in 
workshop discussions” has been included.  Prior to the workshop participants were provided 
with review on the impacts of seismic to marine organisms (Fisheries 2017).  For 
completeness a post workshop review of “Other research on seismic impacts” is also included 
in this report which includes two recent reviews completed in 2017.  

  

                                                 
3 Subsequent to the workshop, some of the research by Day et al. 2016 has been published in peer reviewed 
journals.  As these publications were not available at the time of the workshop they have not been cited here. 
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4 Risk Analysis 

4.1 Mobile invertebrates (e.g. crabs, prawns, lobsters)  
Table 4-1  Risk scores and risk ratings for mobile invertebrates as scored in the workshop 

 Air gun array volume(in3) 

Depth (m) <2000 2000-4500 >4500 

≥ 20 C3, L3 = 9 (HIGH) N/A N/A 

50 C3, L2 = 6 (MODERATE) C3, L3 = 9 (HIGH) C4, L3 = 12 (SEVERE) 

100 C2, L2, = 4 (LOW) C3, L2 = 6 (MODERATE) C3, L3 = 9 (HIGH) 

>250 C2, L1 = 2 (NEGLIGIBLE) C3, L2 = 6 (MODERATE) C3, L2 = 6 (MODERATE) 

4.1.1 Risk justification – workshop discussions 
The risk ratings on mobile invertebrates (Table 4-1) were mainly based on the experimental 
studies which examined impacts of seismic surveys on the southern rock lobster (Jasus 
edwardsii) (Day et al. 2016).  

The risk scores were attributed to the sub-lethal impacts of air guns on the lobsters, in 
particular the reduced ability to right themselves and capacity for tail extension.  During the 
scoring process workshop discussions considered these indicators of stress likely to have an 
indirect effect on lobster survival and reproductive output, potentially by affecting other 
behaviour such as feeding, mating and predator avoidance. 

The impacts on lobster physiology and implications of reduced haemocytes and nutritional 
index were less clear but could possibly result in reduced immunity and general health status.  
Due to the uncertainty of these physiological effects on lobster survival the risk of seismic 
impacts was conservatively scored higher in the workshop. 

The risk of impacts associated with seismic activity was considered to be greater in shallower 
waters and reduce with depth due to attenuation of sound with distance from the source.  
Risks increased with increasing size of the sound source.   

4.1.2 Summary of research referred to in workshop discussions 
The impact of seismic surveys on lobsters was based on research undertaken on the southern 
rock lobster in Tasmania in a coastal location 10-12 m deep (Day et al. 2016).  Lobsters were 
held in cages and exposed to a single compressed air source of two different volumes (45 in3 
or 150 in3 gun), at a pressure of either 1300 psi or 2000 psi. Experiments were undertaken in 
the summer and winter. Estimates of sound received were made at the lobster pots.  The 
estimates of cumulative sound loading ranged between 191 – 199 re 1 µPa2·s, depending on 
source and pressure (see page 55, Day et al. 2016).  These exposures were estimated to 
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approximate those of a commercial ~ 3100 in3 seismic source passing within 100-500 m 
range adjacent the lobsters. 

Day et al. (2016) found no evidence of any direct impacts on lobster survival in any of the 
experiments.  While no direct mortality was recorded, variable sub-lethal effects were 
observed with impacts differing depending on a range of factors including: season, air gun 
size and air pressure, time after exposure and lobster source location (i.e. the location where 
lobsters were collected).  The greatest impacts or worst case scenario was used in the risk 
rating process.   

The first sub-lethal impact was reduced tail extension, which was considered to be 
symptomatic of fatigue (Spanoghe and Bourne 1997).  Lobsters exposed to air guns at 150 in3 
2000 psi in summer demonstrated a reduced capacity for tail extension for up to 14 days after 
seismic exposure.  The second and more significant, sub-lethal impact was a lag in the 
righting response, measured as the time it takes for a lobster to right itself after being placed 
on its back.  Lobster righting response is a complex reflex requiring neurological control and 
muscle coordination (Stoner 2009).  The study found that exposure to 150 in3 air gun at 1300 
psi, increased the righting time for lobsters by up to twice compared to lobsters which were 
not exposed.  The effects on righting time persisted for up to 365 days post exposure, even 
after a moult, suggesting the effects may be permanent (Day et al. 2016). 

The cause of the delayed righting response was attributed to damage to the sensory hairs in 
the statocyst, the principle balance sensory organ in lobsters located in the base of the 
antennules.  Significant damage to hair cells was observed in most of the experiments using 
either the 45 or 150 in3 gun, and at 1300 and 2000 psi. Statistical analysis showed that the 
damage was correlated to impaired righting time, with greater damage resulting in slower 
righting (Day et al. 2016).   

The consequences of reduced tail extension and increased righting time on lobster health, 
survival and reproduction are not known but behaviours associated with feeding, predator 
avoidance, locomotion, social behaviour and reproduction may be negatively affected. 

Seismic exposure was also shown to have impacts on lobster physiology through impacts to 
lobster haemolymph. Haemolymph is the invertebrate analogue to vertebrate blood carrying 
out functions such as transport of oxygen, waste and nutrients and mediating immune 
response.  Two impacts were observed, the first was a reduction in the refractive index of the 
haemolymph which is a measure of nutritional condition indicating how well lobsters are able 
to consume, digest and assimilate food.  The refractive index was significantly reduced in one 
of the treatments involving the 150 in3 gun at 1300 psi at 120 and 365 days post exposure.  
The other five experimental treatments showed no significant effect.  The second response 
was a reduced haemocyte count, in all treatments, with one treatment showing impacts up to 
365 days post exposure.  Decreases in circulating haemocytes typify the response to trauma 
or stress and can leave the lobster vulnerable to infection (Day et al. 2016).     
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4.1.3 “Other” research on seismic impacts to mobile invertebrates 
(excluding squid) 

Other research has also not found any evidence of increased mortality due to airgun exposure 
on invertebrates including lobsters (Parry and Gason 2006, Payne et al. 2007), snow crabs 
(Christian et al. 2003) and shrimps (Andriguettto-Filho et al. 2005).   

Behavioural changes have been observed in other invertebrates in response to seismic sound.  
Decapods have been demonstrated to show a startle response to airguns, but only when they 
were < 10cm from the sound source. No response was observed for decapods at distances of 
1 m or more (Christian et al. 2003, Goodall 1990).  Sound avoidance may have more lasting 
impacts on populations particularly if animals migrate out of an area in which seismic 
surveys are conducted however no such behavioural response was observed in snow crabs 
(Christian et al. 2003) or in shrimp (Celi et al. 2013).  Other studies on righting times in the 
American lobster (Homarus americanus) found no differences in righting times after 
exposure to 202 -227 dB 1 µPa at a distance of 2m from the source (Payne et al. 2007).   

Seismic sound has also been demonstrated to cause physiological impacts on invertebrates.  
A study on crabs found an increased oxygen consumption rate in large crabs (Wale et al. 
2013a & b), however, studies on the effect of seismic noise on metabolic rates has found no 
clear evidence of seismic sound on food consumption rate in lobsters (Payne et al. 2007).  

Research into impacts on invertebrate haemolymph in response to seismic sound has found 
no impacts in the American lobster (Payne et al. 2007) or snow crab (Christian et al. 2003 
and 2004).  Shipping noise has been shown to increase glucose, total protein, heat-shock 
proteins, and total haemocyte count in lobster (Filicotto et al. 2014).   
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4.2 Immobile invertebrates (e.g. pearl oysters, scallops, trochus, 
sea cucumbers)  

Table 4-2   Risk scores and risk ratings for immobile invertebrates as scored in the workshop 

 Air gun array volume (in3) 

Depth (m) <2000 2000-4500 >4500 

≥ 20 C4, L3 = 12 (SEVERE) N/A N/A 

50 C4, L3 = 12 (SEVERE) C4, L3 = 12 (SEVERE) C4, L4 = 16 (SEVERE) 

100 C3, L3 = 9 (HIGH) C3, L4 = 12 (HIGH) C4, L3 = 12 (SEVERE) 

>250 C1, L4 = 4 (LOW) C2, L2 = 4 (LOW) C2, L3 = 6 (MODERATE) 

4.2.1 Risk justification – workshop discussions 

The risk scores on immobile invertebrates (Table 4-2) were mainly based on the results of 
research on seismic impacts to the commercial scallop (Pecten fumatus) (Day et al. 2016).  

Mortality was considered a severe risk for scallops at certain depths, noting that the effects of 
seismic sound on physiology and survival may not be immediate but become more apparent 
with time (Day et al. 2016). 

The WA pearl fishery currently collects wildshell in depths of <40m.  The majority of the 
wild pearl shell is collected off 80 Mile Beach, and is used for pearl cultivation in farms in 
the Kimberley region.  Wild shell may occur in waters >40m, however, deeper populations 
have not been investigated to date.  

The risk of impacts associated with seismic activity were considered to be greater in 
shallower waters reducing with depth due to the attenuation of sound with distance.  Risks 
were assessed as greater with higher sound source.   

4.2.2 Summary of research referred to in workshop discussions 

Research on the impact of seismic sound on scallops was undertaken as a part of the same 
project which examined the impact of seismic to lobsters, i.e. Day et al. (2016).  This 
research used 45 and 150 in3 guns, at 1300 and 2000 psi in 10-12m water depth.  Scallops 
were exposed to a number of passes of the air gun, 0 (control) 1, 2 and 4 passes.  
Measurements of exposure varied between peak to peak 191-213 (dB re 1µPa), SEL 181-188 
(dB re µPa2·s) and SEL cumulative 189-197 (dB re 1 µPa2·s). These exposure levels were 
suggested to be similar levels received during commercial seismic surveys.  The impact on 
scallop health and survival was assessed at three different time periods following exposure 0, 
14 and 120 days. 
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The research found no evidence of mass mortality in response to air gun exposure, with 
mortality rates found to be similar to natural annual mortality rates of 11-51%.  However, the 
results did find repeated exposure, resulted in significantly increased mortality rates over a 
period of four months, compared to unexposed controls.  Scallops exposed to 2 and 4 seismic 
gun passes were found to have an elevated risk of mortality over that of both the 0 and 1 pass 
treatments.  The mortality was not immediate, with highest mortality occurring in the longer 
term, 120 days after exposure (Day et al. 2016).    

Exposure to seismic air signals had significant effects on the physiology of scallops, 
particularly on the haemocyte count and haemolymph biochemistry.  Scallop haemolymph is 
responsible for a number of functions, including oxygen and nutrient transfer, waste removal 
and immune response and is used as an indicator of health and stress response.  Whilst the 
responses in scallop haemocyte counts were variable depending on the treatment, the largest 
changes were observed at day 120, with numbers decreasing to a level around half that of 
control scallops.  Eight haemolymph electrolyte and mineral ions showed a significant 
response to exposure, with sodium, potassium, calcium and chloride showing overall trends 
of increasing concentration with repeated exposure and magnesium and bicarbonate showing 
decreasing concentration in response to exposure. Protein and glucose levels in the 
haemolymph also decreased with exposure. Other metabolites, organic molecules and 
enzymes showed no change.  The disruption of the ability to control the concentration of 
electrolytes and minerals in the haemolymph indicates a compromised physiology, 
particularly as the impact persisted over the course of the entire experiment (day 120 post-
exposure) (Day et al. 2016). 

Scallop behaviour was also affected by seismic exposure including, positioning, mantle 
irrigation, righting and a flinching behaviour.  Scallops showed a change in the rate at which 
they recess into the sediment, with the recessing rate increasing with the number of air gun 
passes.  The most important finding from the recessing tests was that the impact persisted to 
the 120 day sampling point, indicating a chronic alteration in this reflex.  Scallops which had 
been exposed to air guns were slower to right themselves, and a novel flinching behaviour, 
involving rapid retraction of the mantle velum was observed during exposure up to 350 m 
from the air gun source (Day et al. 2016).   

The impacts of sub-lethal effects of seismic activities in terms of a scallops value to fisheries 
were also assessed.  Five indices were compared between the different treatment levels, with 
no clear response in relation to seismic exposure observed in: mass-to-length, mass-to-
volume ratios, tissue mass relative to total mass, adductor mass, total mass and tissue mass 
(Day et al. 2016).   
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4.2.3 “Other” research on seismic impacts to immobile invertebrates  

Other studies have found no evidence of increased mortality or a change in the condition of 
the meat or roe quality in the commercial scallop P. fumatus in relation to air gun exposure 
(Harrington et al. 2010, Przeslawski et al. 2017).  These studies differed to that of Day et al. 
2016 in that they involved the use of a commercial array involving a seismic vessel and 
impacts were assessed in the short term (i.e. <2 months).  These studies were also based on 
relatively low sound exposure levels (highest received was 146 dB re 1 µPa2·s).  

There is evidence that seismic sound may affect behaviour of other molluscs.  For example 
changes in bioturbation were observed in the clam Ruditapes philippinarum (Solan et al. 
2016).  

There are limited studies on the effects of seismic sound on immobile invertebrate 
physiology.  The impacts on clams is variable: one study on the clam Ruditapes 
philippinarum which examined a range of invertebrates found no impacts of shipping noise 
or impulse noise on tissue levels of glucose or lactate (Solan et al. 2016), whereas another 
study on the clam Paphia aurea found increased levels of glucose, hydrocortisone, and 
lactate in the muscle and hepatopancreas in immediately after exposure to seismic airgun 
pulses (La Bella et al. 1996).   
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4.3 Finfish demersal (e.g. goldband snapper, red emperor, pink 
snapper)  

Table 4-3   Risk scores and risk ratings for demersal fish as scored in the workshop 

 Air gun array volume (in3) 

Depth (m) <2000 2000-4500 >4500 

≥ 20 C3, L3 = 9 (HIGH) N/A N/A 

50 C2, L3 = 6 (MODERATE) C3, L3 = 9 (HIGH) C4, L3 = 12 (SEVERE) 

100 C2, L2 = 4 (LOW) C3, L3 = 9 (HIGH) C3, L3 = 9 (HIGH) 

>250 C2, L1 = 2 (NEGLIGIBLE) C2, L3 = 6 (MODERATE) C2, L3 = 6 (MODERATE) 

4.3.1 Risk justification – workshop discussions 
During the workshop it was decided to focus on larger, commercially important demersal 
species rather than smaller species with less commercial significance such as damsel or 
anemone fish (Table 4-3).  Risk scores were mainly based on the results of research on 
seismic impacts on two important demersal species in WA, pink snapper (Chrysophrys 
auratus) and goldband snapper (Pristipomoides multidens) (McCauley and Fewtrell 2008, 
McCauley and Kent 2012, McCauley et al. 2000, 2003a & b).   

It was agreed in the workshop that the risk assessment of seismic impacts demersal fish 
would be based on two conservative assumptions. Firstly, it was assumed that demersal 
species do not swim away from a vessel undertaking a seismic survey.  Whilst most species 
of fish can swim fast over short distances, it was assumed that most demersal species tire 
over longer distances and are unable to swim beyond seismic exposure.  The second 
assumption was that fish have a swim bladder which is connected to the inner ear.  Fish 
which have swim bladders and those which are connected to the inner ear are more 
susceptible to pressure mediated injury to ears than species lacking swim bladders (Carroll et 
al. 2016).      
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4.3.2 Summary of research referred to in workshop discussions 
Experiments on the effects of seismic exposure to pink snapper has found evidence of 
extensive damage to the sensory hair cells surrounding the otoliths (McCauley et al. 2000).  
Experiments involved holding snapper in cages and exposing them to signals from an air gun 
towed toward and away from the cages, mimicking the stimulus from a passing seismic 
vessel.  Hydrophones were used to record received air gun signals, which were mostly 
between 150-180 dB re 1µPa mean squared pressure.  The higher sound exposure levels (i.e. 
180 dB re 1µPa mean squared pressure ) were considered comparable to what would be 
received to what would be expected at ranges < 500 m from a large seismic array (McCauley 
et al. 2000).  The research found that damage was so severe to leave holes where the hair 
cells were ejected from the epithelia, and after 58 days the number of holes was 10 x higher 
than controls which were not exposed to seismic sound.  On the first set of seismic passes that 
led to the hearing damage exposed fish showed a vigorous behavioural response, but 58 days 
later, the same fish failed to respond to seismic passes indicating either habituation or 
potential hearing damage (McCauley and Fewtrall 2008, McCauley et al. 2003b).   

The study by McCauley et al. (2000) focused only on the anatomical impacts to the inner ear, 
and the consequences of damaged hair cells to long term survival and reproduction was not 
investigated.  Fish with impaired hearing may have reduced fitness potentially leaving them 
vulnerable to predators, unable to locate prey, sense their acoustic environment, or, in the 
case of vocal fishes, unable to communicate acoustically (McCauley et al. 2003b).   

A separate study on goldband snapper in the Timor Sea involved fish traps and a 3090 in3 air 
gun array.  The array was towed towards the fish traps, with fish experiencing a range of 
exposures depending the closest distance that the array was from the traps. The distances that 
the array was towed towards the traps were 370m, 2.1 km and 58 km at the closest air gun 
pass.  The maximum sound exposure level in these experiments was 180 dB re 1 µPa2·s.  
Damage to the sensory epithelia was quantified and there was exponentially increasing hair 
cell damage with decreasing range from the sources or increasing cumulative sound pressure 
(McCauley and Kent 2012).   

McCauley et al. (2003a) examined the effect of marine seismic surveys on humpback whales, 
sea turtles, fishes and squid.  The effects of air gun signals were tested on 16 fish species with 
a range of responses observed.  The received sound levels varied between 146-195 dB re 1 
µPa mean square pressure in the different experiments.  The observed responses were: 

• Startle response especially in smaller fishes 
• Alarm responses becoming more noticeable in response to increased intensity of air 

gun signals 
• Lessening of severity of startle responses through time (habituation) 
• Behavioural response (forming tighter groups, swimming faster, moving to the bottom 

of the cage) which increased in severity with increased exposure 
• Evidence of fish fleeing an operating air gun above some tolerance level 
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• Damage to hearing system of exposed fishes in the form of ablated or damaged hair 
cells.  However the exposure regime required to produce this damage was not 
established and it was believed such damage would require exposure to high level air 
gun signals at short range from the source 

• No significant increases in stress (measured through blood cortisone levels) which 
could be directly attributed to air gun exposure. 

In contrast to the research on pink and gold band snapper, a study involving a 3D seismic 
survey in northern WA, found no significant effects on the abundance or diversity on either 
site attached or free roaming demersal species (Miller and Crisp 2013). In this study fish were 
exposed to SELs of less than 187 DB re 1 µPa2s and impacts were examined through 
underwater visual consensus of the fish community, before and after the seismic survey.  The 
underwater visual counts were combined with 10 years of historical monitoring data and no 
effects of seismic exposure were detected in terms of species richness and abundance (Miller 
and Crisp 2013).       

4.3.3 “Other” research on seismic impacts to demersal finfish 
There have been numerous studies on the effects of low frequency sound on a range of fish 
species (< 300 Hz) and two recent reviews (Carroll et al. 2017, Fisheries 2017).  This 
research is summarised in Table 2-2 and the paragraphs below.   

The majority of studies have not found air guns to affect finfish survival (Boeger et al. 2006, 
Dalen and Knutsen 1987, Hassel et al. 2003 & 2004, McCauley et al. 2003a & b, Popper et 
al. 2005 & 2016, Santulli et al. 1999, Thomsen 2002 and Wardle et al. 2001).    

While seismic surveys have not been shown to directly impact on demersal finfish survival, 
some studies have found evidence of physical impacts of seismic sound at high exposure 
levels (i.e. 208-246 dB re 1 µPa2) swim bladder damage (Falk and Lawrence 1973, Holliday 
et al. 1987, Weinhold and Weaver 1972), internal bleeding or damage to blood cells 
including eye injuries (Kosheleva 1992), blindness (Matishov 1992) and injury to sensory 
cilia of the lateral line (Booman 1996).  Other studies have found impacts to sensory epithelia 
attached to the otolith, at exposure levels up to 185 dB re 1 µPa2 (McCauley and Fewtrall 
2008, McCauley et al. 2000, 2003a & b).   

In contrast, a substantial amount of research has found little damage (McCauley et al. 2008) 
or limited evidence of physical injury in response to seismic exposure (Boeger et al. 2006, 
Falk and Lawrence 1973, Hassel et al. 2003, Hastings and Miksis-Olds 2012, Holiday et al. 
1987, IMG 2002, Koshlevea 1992, McCauley and Kent 2012, Popper et al. 2005 & 2016, 
Song et al. 2008, Santulli et al 1999, Thomsen 2002, Weinhold and Weaver 1972).   

Research examining impacts to physiology have also shown conflicting results with sea bass 
(Dicentrarchus labrax) showing increased serum, cortisol, glucose and lactate after exposure 
(Santulli et al. 1999) where as a range of Western Australian species showed no measured 
response (McCauley et al. 2000). 
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Seismic sound can cause behavioural responses in marine finfish, some of which may 
negatively affect a population (e.g. reduced rate of foraging or predator avoidance), and 
others which may pose little increase to risk (e.g. brief startle response) (Carroll et al. 2017).  
Most studies were based in laboratories or using cages and need to be interpreted with 
caution. Airgun discharges have been reported to cause a range of startle and alarm responses 
in fish, including C-starts (an involuntary response where all the lateral muscles along one 
side of the fish contract and the fish darts off in that direction), changes in schooling patterns, 
water column positions and swimming speeds (Boeger et al 2006, Chapman and Hawkins 
1969, Dalen and Knutsen 1987, Engas et al. 1996, Fewtrell and McCauley 2012, Hassel et al. 
2003 & 2004, McCauley et al. 2000 & 2003a & b, Pearson et al. 1992, Przeslawski et al. 
2017, Santulli et al. 1999, Skalski et al. 1992, Slotte et al. 2004, Thomsen 2002, Wardle et al. 
2001).  While some species show strong behavioural changes to seismic sound exposure, a 
lack of behavioural effects have been observed in other species (Hassel et al. 2003, IMG 
2002, Pena et al. 2013, Popper et al. 2005, Wardle et al. 2001).  Some fish species have 
potentially shown habituation to repeated airgun noise, with some fish showing less startle 
responses or quickly returning to normal behavioural patterns (Boeger et al. 2006, Fewtrell 
and McCauley 2012, Pearson et al. 1992).  

Anthropogenic noise also has the potential to mask biologically relevant acoustic cues, which 
in turn can affect fish survival (Popper 2009). Acoustic production is an important process 
during courtship and spawning displays for some species (Hawkins and Amorim 2000, Mann 
2016, Moulton 1963), defensive territorial displays (Myrberg 1997, Tricas et al. 2006), 
intraspecific communication (Riggio 1985), predator avoidance (Anglea et al. 2004, Godin 
and Morgan 1985) and/or prey detection (Giguère and Dill 1979).  Underwater sound is also 
important for orientation of coastal marine fish species, especially during settlement 
processes in their pelagic larval stage (Leis et al. 2003, Mann et al. 2007, Simpson et al. 
2004, Wright et al. 2005).  Anthropogenic noise (mainly boat traffic) has been shown to 
affect fish communication (Codrain et al. 2009, Vasconcelos et al. 2007), settlement of coral 
fish larvae (Simpson et al. 2008) and predator detection (Doksaeter et al. 2009, Slabbekoorn, 
et al. 2010).   
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4.4 Finfish pelagic (e.g. spanish mackerel, silver trevally)  
Table 4-4   Risk scores and risk ratings for pelagic finfish as scored in the workshop 

 Air gun array volume (in3) 

Depth (m) <2000 2000-4500 >4500 

≥ 20 N/A N/A N/A 

50 N/A N/A N/A 

100 N/A N/A N/A 

>250 C2, L1 = 2 (NEGLIGIBLE) C2, L1 = 2 (NEGLIGIBLE) C2, L1 = 2 (NEGLIGIBLE) 

4.4.1 Risk justification – workshop discussions 

Risk scores for pelagic species was based on the impacts of seismic in waters >250 m (Table 4-4), 
risk scores were not allocated for depths < 250m as it was assumed that pelagic species do not 
frequently inhabit these depths.   

The main assumption made in the workshop in relation to impacts to pelagic species was that whilst 
pelagic fish do occur in the upper 20m of the water column, they have the potential to swim to deeper 
water where they are less likely to be impacted by seismic operations.  Due to this capacity the 
impacts to pelagic fish were only scored for the >250m category.  The risk to pelagic finfish was rated 
as negligible for all sound intensities at depths of >250 m.  Risk scores were based mainly on research 
on silver trevally (Pseudocaranx dentex) (McCauley et al. 2000).  It is recognised that silver trevally 
is a temperate species which inhabits both inshore and pelagic waters, however, this was the only 
available research of seismic impacts on a species which inhabits deeper waters.  There is currently an 
absence of information on the impacts of seismic on truly pelagic species such as swordfish and tuna.  

4.4.2 Summary of research referred to in workshop discussions 

McCauley et al. (2000) undertook extensive research on the effects of seismic sound on 16 species of 
fish, including one pelagic species, the silver trevally (Pseudocaranx dentex) (exposure 156-191 dB re 
1 µPa)  Impacts of seismic sound to trevally were similar to demersal species and included: startle 
response, tendency for faster swimming and formation of tight groups, movement to the bottom centre 
of the cage (see Section 4.3 for a more detailed description)  These behaviours became increasing 
more prevalent as the air-gun threshold increased (Fewtrell and McCauley 2012, McCauley et al. 
2000).   

4.4.3 “Other” research on seismic impacts to pelagic finfish 

The majority of research of impacts of seismic is based on demersal species (Section 4.3), with some 
experiments on pelagic species. 

Pelagic fish including herring (Clupea harengus) and blue whiting (Micromesistius poutassou) were 
shown to descend in the water column in response to air gun exposure at between 189 – 197 dB re 1 
µPa (Slotte et al. 2004).  The same study found that the abundance of pelagic and mesopelagic fish 
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was greater outside than inside the shooting area of seismic surveys.  Studies by La Bella et al. (1996) 
also found a shift in the vertical distribution of pelagic finfish species in response to seismic sound.  In 
contrast to other research, this study found that fish moved in the opposite direction, moving towards 
the surface layer in response to seismic sound. 
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5 Summary  
Risk scores were allocated based on the collective knowledge and expertise of participants in 
the workshop.  During the workshop risk scores were largely estimated using the results of a 
few key studies investigating impacts on a limited number of Australian marine species. The 
workshop highlighted the need for a greater understanding of seismic impacts.  The recently 
announced research initiative on seismic impacts led by the Australian Institute of Marine 
Science (AIMS) is likely to provide additional valuable information on the effects of seismic 
surveys on marine organisms.  The risk ratings provided in this report will need to be 
reviewed, once the outcomes of the AIMS research becomes available along with any other 
new information.  

This risk assessment identified that overall the greater the intensity of sound and shallower 
the water depth the greater the assigned risk. For all fish and invertebrates the impacts of 
seismic surveys, in waters deeper than 250 m was assessed as acceptable (i.e. moderate or 
lower).  In waters <250m, the scores ranged from negligible to severe risk depending on 
depth, resource and seismic intensity.  The organisms classified as most at risk from seismic 
impacts were immobile invertebrates (e.g. molluscs) while pelagic fish were rated as at the 
least at risk (Figure 5-1).   

 

Figure 5-1   Summary of risk scores for aquatic resource type 
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Mobile invertebrates: Risk ratings for mobile invertebrates were mostly based on studies on 
the southern rock lobster (J. edwardsii).  Research has shown behavioural responses with 
delayed ability of lobsters to right themselves and reduced tail extension, physical effects 
through damage to the hairs surrounding the statocycst and a range of physiological impacts 
(Day et al. 2016). These impacts were considered sublethal impacts with the potential to 
affect reproduction.   

Immobile invertebrates: Risk ratings for immobile invertebrates was mainly based on the 
outcomes of research on the commercial scallop (P. fumatus) (Day et al. 2016).  Research 
found that scallops had higher mortality after exposure to seismic surveys with mortality 
increasing with repeated exposure.  This mortality was not immediate but occurred post- 
exposure, with maximum mortality occurring after 120 days.  Physiological impacts were 
also observed, with significant changes to a range of haemolymph properties.  Scallop 
behaviour was also affected.   

Demersal fish: Risk scores were based mainly on caged based research on two commercial 
species pink snapper (C. auratus) and goldband snapper (P. multidens) (McCauley and 
Fewtrall 2008, McCauley and Kent 2012, McCauley 2000, 2003a & b).  Research showed 
that pink snapper had extensive damage to hairs surrounding the statocyst after seismic 
exposure.  While not studied directly these impacts may impact long term survival and 
reproduction.  Seismic sound was found to affect goldband behaviour (startle and alarm 
response, change in swimming behaviour and vertical position).  There were four high risk 
scores and one severe risk score for demersal species.   

Pelagic fish: Due to most pelagic species inhabiting deeper water where seismic impacts are 
attenuated, the risk scores to pelagic species were scored as negligible.  The impacts of 
seismic to pelagic species were based mainly on research to silver trevally (P. dentex) 
(McCauley et al. 2000).  

5.1 Future directions 
This risk assessment has examined the impacts of seismic surveys on individual adult marine 
organisms in terms of effects on survival and reproductive potential.  This represents the first 
step in estimating the broader impacts a seismic survey may pose to species on larger spatial 
scales, e.g. at the level of species populations, management units and fisheries.  A guidance 
statement is currently being developed by Fisheries which will provide additional information 
for proponents in this regard.  It is anticipated the new guidance statement will be finalised in 
2018. 
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7 Appendices.   

Appendix 1.  Workshop participants 
Attendees Representative Body 

Facilitators  

Brent Wise Fisheries Supervising Research Scientist 

Rick Fletcher Fisheries Executive Director Fisheries Research 

Participants  

John Harrison WAFIC Chief Executive Officer 

Mannie Shea WAFIC Executive Officer 

Robert McCauley Curtin University 

Euan Harvey Curtin University 

Chandra P. Salgado Kent Curtin University 

Aaron Irving Pearl Producers Association 

Andrew Long Petroleum Geo-Services 

Matt Hatch  Woodside Energy 

Libby Howitt  Quadrant Energy 

Jayson Semmens  University of Tasmania 

Jenny Shaw  Western Australian Marine Science Institution 
**Tim Carter and 
Cameron Sim 

National Offshore Petroleum Safety and Environmental 
Management Authority  

Jade Herwig and Stan 
Bowes Department of Mines, Industry Regulation and Safety 

Mark Meekan Australian Institute of Marine Science 

Tanya Whiteway  Geoscience Australia 

Johnathon Davey Seafood Industry Victoria 

John Hughes International Association of Geophysical Contractors 

Brett McCallum Fisheries Research and Development Corporation 

Andrew Rowland Recfishwest 

Shaun Wilson Department of  Biodiversity, Conservation and Attractions 

Petrina Raitt Green Light Environmental, APPEA 
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Apologies  
Gavin Begg  South Australian Research and Development Institute 
James Findlay  Australian Fisheries Management Authority 
Beth Gibson  Australian Fisheries Management Authority 
Mike Travers  Department of Fisheries 
Steven Clarke - South Australian Research and Development Institute 
Andrew Rowland  Recfish West 
Ray Masini  Office of the Environmental Protection 
Patrick Hone  Fisheries Research and Development Commission 
Rachel Przeslawski –  Geoscience Australia 
Alex Ogg WAFIC Operations Manager 

Andrew Taylor Australian Petroleum Production & Exploration Association 
Limited 

Alan Kendrick Department of Biodiversity, Conservation and Attractions 
Nathan Hanna and Kerry 
Cameron Department of the Environment and Energy 

James Findlay  The Australian Fisheries Management Authority 

Gavin Begg South Australia Research and Development 
  
DPIRD (Fisheries) Attendees (note that Fisheries staff were not involved in the scoring 
process) 
Rhiannon Jones Fisheries Management Officer 
Carli Telfer Senior Management Officer 
Fiona Webster Research Scientist 
Stephen Newman Principle Research Scientist 
Nick Caputi Supervising Research Scientist 
Brett Molony Director Aquatic Resource Management 
Gary Jackson Principle Research Scientist 
Clint Syers Principle Policy Manager 
Anthony Hart Principle Research Scientist 
** Note that NOPSEMA representatives were present only for the morning session and were 
deliberately not present for the risk scoring component of the workshop 
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Appendix 2.  Organisations which provided comment on the ERA 
report 
 

Organisation 

Department of  Biodiversity, Conservation and Attractions 

Western Australian Department of Mines, Industry, Regulation and Safety 

International Association of Geophysical Contractors 

National Offshore Petroleum Safety and Environmental Management Authority 

University of Western Australia Oceans Institute 

Curtin University, Centre for Marine Research and Technology 

Geoscience Australia 
Australian Petroleum Production & Exploration Association Limited 
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