

Digital Library

Natural resources research reports

Natural resources research

2-2003

Paired site sampling for soil carbon estimation – Western Australia

Edward Arnold Griffin Department of Primary Industries and Regional Development, edward.griffin@dpird.wa.gov.au

W H. Verboom

D G. Allen

Follow this and additional works at: https://library.dpird.wa.gov.au/lr_researchrpts

Part of the Agriculture Commons, Environmental Indicators and Impact Assessment Commons, and the Soil Science Commons

Recommended Citation

Griffin, E A, Verboom, W H, and Allen, D G. (2003), *Paired site sampling for soil carbon estimation – Western Australia*. Australian Greenhouse Office, Canberra. Report National carbon accounting system technical report 38.

This report is brought to you for free and open access by the Natural resources research at Digital Library. It has been accepted for inclusion in Natural resources research reports by an authorized administrator of Digital Library. For more information, please contact library@dpird.wa.gov.au.

national carbon accounting system

technical report no. 38

Paired Site Sampling for Soil Carbon Estimation – Western Australia

E. A. Griffin, W. H. Verboom and D.G. Allen

Australian Government Australian Greenhouse Office

The National Carbon Accounting System:

- Supports Australia's position in the international development of policy and guidelines on sinks activity and greenhouse gas emissions mitigation from land based systems.
- Reduces the scientific uncertainties that surround estimates of land based greenhouse gas emissions and sequestration in the Australian context.
- Provides monitoring capabilities for existing land based emissions and sinks, and scenario development and modelling capabilities that support greenhouse gas mitigation and the sinks development agenda through to 2012 and beyond.
- Provides the scientific and technical basis for international negotiations and promotes Australia's national interests in international fora.

http://www.greenhouse.gov.au/ncas

For additional copies of this report phone 1300 130 606

PAIRED SITE SAMPLING FOR SOIL CARBON ESTIMATION – WESTERN AUSTRALIA

E.A. Griffin, W.H. Verboom and D.G. Allen

Department of Agriculture, Western Australia

National Carbon Accounting System Technical Report No. 38

February 2003

Australian Government

Australian Greenhouse Office

Printed in Australia for the Australian Greenhouse Office

© Australian Government 2003

This work is copyright. It may be reproduced in whole or part for study or training purposes subject to the inclusion of an acknowledgement of the source and no commercial usage or sale results. Reproduction for purposes other than those listed above requires the written permission of the Communications Team, Australian Greenhouse Office. Requests and enquiries concerning reproduction and rights should be addressed to the Communications Team, Australian Greenhouse Office, GPO Box 621, CANBERRA ACT 2601.

For additional copies of this document please contact the Australian Greenhouse Office Publications Hotline on 1300 130 606.

For further information please contact the National Carbon Accounting System at http://www.greenhouse.gov.au/ncas/

Neither the Australian Government nor the Consultants responsible for undertaking this project accepts liability for the accuracy of or inferences from the material contained in this publication, or for any action as a result of any person's or group's interpretations, deductions, conclusions or actions in reliance on this material.

February 2003

Environment Australia Cataloguing-in-Publication

Griffin, E.A. (Edward Arnold)

Paired site sampling for soil carbon estimation - WA / E.A. Griffin, W.H. Verboom, D. Allen.

p. cm.

(National Carbon Accounting System technical report; no. 38)

ISSN: 1442-6838

1. Soils-Carbon content-Western Australia-Analysis. 2. Clearing of land-Western Australia-Environmental aspects. I. Verboom, W.H. II. Allen, D. III. Australian Greenhouse Office. IV. Series.

631.41'09941-dc21

SUMMARY

This report describes a detailed paired site study at nine locations in the drier parts of south–western Australia representative of areas most recently cleared for agriculture. The pairing was of uncleared, short-term cleared and long-term cleared sites. The study provided samples for modelling soil organic carbon fluxes by CSIRO Land and Water.

Analysis and interpretation of results from the samples collected and detailed soil morphology descriptions provide comprehensive documentation of the soil carbon and other soil parameters. This provides a basis for better understanding factors influencing soil carbon dynamics in soils in Western Australia, particularly in areas with sandy topsoils. There were no major differences between the soil parameters (such as organic carbon) of the land use pairings. Soil organic carbon in the fine earth appeared to be slightly increased by changing to agricultural systems, especially in the topsoil. Bulk density was usually increased in the topsoil as a result of clearing. Coarse organic matter and coarse mineral fragments, where present, contained significant amounts of organic carbon.

Recommendations are made about future monitoring, including the fate of areas examined in this study.

ACKNOWLEDGMENTS

Many acknowledgments are in order. In particular, the help and co-operation of the land owners, including those whose properties were not in the end used, made this project possible. A number of people including Mal Harper, Tilwin Westrup, Harry Lauk, Brendan Nicholas and Kelly Holyoake assisted in locating these properties. Phil Goulding assisted in providing digital maps for the initial search for properties.

Field work was conducted by Bill Verboom, Ted Griffin and John Bessell-Browne with the assistance at some locations of Noel Schoknecht, Brendan Nicholas and Surender Mann. Ms Anne Rick provided assistance with botanical knowledge of the Newdegate area. John Bessell-Browne did the initial sample drying and the measurements of bulk density.

Staff of the Chemistry Centre of Western Australia prepared the samples and performed all analyses.

Hernan Ortiz entered the site and profile data into the soils database.

Phil Goulding prepared the location map for the report.

Noel Schoknecht provided helpful comments on the report.

TABLE OF CONTENTS

			Page No.					
	Sum	mary	iii					
	Ackr	nowledgments	iv					
1.	Intro	duction	1					
2.	Key	Deliverables	1					
3.	 2. Key Deliverables 3. Terms 4. Study Methodology 4.1 Study Location Selection 4.2 Site Selection 4.3 Sampling Methodology 4.4 Sampling Time 4.5 Site and Pit Descriptions 4.6 Sample Collection 4.7 Sample Types 4.8 Sample Preparation 4.9 Analytical Methods 							
4.	Stud	y Methodology	2					
	4.1	Study Location Selection	2					
	4.2	Site Selection	4					
	4.3	Sampling Methodology	4					
	4.4	Sampling Time	6					
	4.5	Site and Pit Descriptions	6					
	4.6	Sample Collection	6					
	4.7	Sample Types	6					
	4.8	Sample Preparation	7					
	4.9	Analytical Methods	7					
5.	Resu	lts	9					
	5.1	Comparison of Analytical Results	9					
	5.2	Similarity of Sites at Each Location	11					
	5.3	Comparison Between Locations	13					
	5.4	Bulk Density Trends	14					
	5.5	Fine Earth Organic Carbon (wt %)	15					
	5.6	Cumulative Fine Earth Organic Carbon (as t/ha)	15					
	5.7	Comparison of Fine Earth Organic Carbon Values with that from Previous Study	18					
	5.8	Coarse Organic Matter	19					
	5.9	Fine Earth Organic Carbon and Coarse Organic Matter	22					
	5.10	Organic Carbon in Coarse Mineral Fraction	25					
	5.11	Cumulative Organic Carbon (as t/ha) in Whole Soil	25					
	5.12	Other Differences Related to Land Use	26					
6.	Disc	ussion	27					
7.	Cond	lusions	28					
8.	Reco	mmendations	29					
9.	Refe	rences	30					

TABLE OF CONTENTS

Page No

Appe	endices	
1.	Description of Locations and Sampling Points	31
	Attachment A: Profile Photos for Representative Pits from each Location	85
2.	Organic Carbon, Bulk Density and Clay Content	87
3.	Basic Chemistry of Fractions	115
4.	Exchangeable Cations and Saturation Extract Data for Fine Earth Fraction	125
5.	Bulk Density by Average Depth of Sample	135
6.	Organic Carbon (following Walkley and Black %) in Fine Earth Fraction by Average Sample Depth	143
7.	Cumulative Organic Carbon (W&B, as t/ha) in Fine Earth Fraction by Mid Sample Depth	151
8.	Organic Carbon (W&B) in Fine Earth Fraction by Average Sample Depth Paired Sites Uncleared vs. Report P7 Soil Data (Griffin and Schoknecht, 2000)	159
9.	Coarse Organic Matter (wt %) of Whole Soil by Mid Sample Depth	167
10.	Organic Carbon (W&B%) of Fine Earth Fraction by % Coarse Organic Matter of Whole Soil	175
11.	Organic Carbon (W&B%) of Coarse Fragments by Mid Sample Depth, Compared to Organic Carbon (W&B%) of Fine Earth Fraction	183
12.	Estimations of Cumulative Whole Soil Organic Carbon (t/ha) by Depth	191
13.	Cumulative Organic Carbon in Fine Earth Fraction as a Percentage of the Estimates of Cumulative Whole Soil Organic Carbon (t/ha) by Mid Sample Depth	199
14.	Percentage of Total Organic Carbon in Each Fraction of Each Sample Plotted by Average Sample Depth	207
15.	Organic Carbon (W&B%) of Coarse Fragments by Depth, Compared to Organic Carbon (W&B%) of Fine Earth Fraction	223
16.	EC (1:5, mS/m) of Fine Earth Fraction by Average Sample Depth	231
17.	pH (1:5 CaCl ₂) of Fine Earth Fraction by Average Sample Depth	239
18.	Total P (ppm) of Fine Earth Fraction by Average Sample Depth	247
19.	Total N (ppm) of Fine Earth Fraction by Average Sample Depth	255
20.	Total K (ppm) of Fine Earth Fraction by Average Sample Depth	263
21.	Extractable Al (ppm, in 1:5 $CaCl_2$) of Fine Earth Fraction by Average Sample Depth	271
22.	Sum of Cations (me%) of Fine Earth Fraction by Average Sample Depth	275

LIST OF FIGURES

3
10
10
17
17
18
20
20
21
21
22
23
23
24

LIST OF TABLES

		Page No.
Table 1.	Study locations within IBRA regions.	2
Table 2.	Summary of soil and vegetation at each study location.	4
Table 3.	Land use history for sites at each location.	5
Table 4.	Analyses and soil fractions analysed.	8
Table 5.	Cumulative organic carbon (t/ha) summarised by location and land use.	16

1. INTRODUCTION

This study was designed to assist in determining the changes in the soil carbon pool when land is converted from native vegetation to agricultural uses (such as cropping or grazing). This represents an important part of the Australian Greenhouse Office's National Carbon Accounting System. The focus of this study was to sample representative areas where clearing for agriculture has occurred in Western Australia over the last two decades. This approach was important for the validation of modelling carbon fluxes.

No previous reports systematically document changes in organic carbon in Western Australia after clearing for agriculture. Griffin and Schoknecht (2000) provided estimates of the levels of organic carbon in the native vegetation in a range of soils throughout south-western Australia. These show that organic carbon varies significantly by soil type and climatic region.

The study was principally designed to provide samples and land use history for modelling the changes in the organic carbon pool using the *Roth-C* soil carbon model (Jenkinson, 1990; Jenkinson and Coleman, 1994). The modelling work was supervised by Jan Skjemstad, CSIRO Land and Water, Adelaide.

The sampling and analysis programme conducted was also designed to assist in documenting the deeper profile organic carbon pool as well as any apparent changes in soil properties due to changes in land use.

2. KEY DELIVERABLES

- Data on soil carbon values at the paired sites;
- Land use history for the paired sites;
- Delivery of selected samples to CSIRO Land and Water;
- Proposal for archiving soil samples; and
- Criteria for selecting sample sites for future monitoring.

3. TERMS

To describe the nested sampling areas consistently, the following terms are defined:

- (Study) Location area containing "paired" sampling sites;
- Site one part of the Location at which nested sampling occurred. The different sites are identified by their land use history;
- Sample Points places within a site where sampling occurred; and
- Pits hole(s) at a sample point from which samples are taken.

4. STUDY METHODOLOGY

4.1 STUDY LOCATION SELECTION

The documentation of Griffin *et al.* (2000) indicated that the main clearing for agriculture over the last decades occurred in the drier parts of south-western Australia (Geraldton to Esperance) on soils mostly with sandy surfaces.

Building on land use management information provided by Griffin *et al.* (2000), the present study was designed to locate about 10 study locations throughout the drier parts of south-western Australia where significant clearing was taking place. Each of these locations were to have the same representative soil type in parcels of uncleared and cleared land in close proximity.

The choice of locations was limited to alienated land. This was to avoid delays in, or rejection of approval for destructive sampling (excavation soil pits) on Crown reserves. This constrained the choice of locations to private properties that had significant areas of uncleared land of the required soil types. Much of south-western Australia is notorious for having retained little natural bush areas within farming properties. Locating properties with both recently cleared areas and uncleared bush was thus time-consuming.

Nine study locations were chosen. Figure 1 shows their locations within the context of IBRA regions (following Thackway and Cresswell, 1995) and the climatic subdivisions devised by Griffin and Schoknecht (2000). Table 1 briefly relates these locations to the IBRA regions and soil units presented in that study. Their estimate of the amount of organic carbon (t/ha) in the fine earth fraction of the top 30 cm of soil in uncleared areas is also provided as background.

Table 2 outlines briefly the nature of the soil and vegetation at each study location.

Table 1. Stu	ly locations	within	IBRA	regions.
--------------	--------------	--------	------	----------

Location	Code	IBRA Region	Climate Division	Soil Unit*	OC t/ha**
Northampton	NH	Geraldton Sandplains	Northern	Coloured sands	12
Badgingarra	BA	Geraldton Sandplains	Southern	Pale sands	25
Brookton	BR	Avon Wheatbelt	Western	Pale sands	22
Mullewa	MU	Avon Wheatbelt	Northern	Coloured sands	17
Merredin	ME	Avon Wheatbelt	Eastern	Coloured sands	17
Newdegate (deep)	ND	Mallee	Western	Pale sands	11
Newdegate (shallow)	NS	Mallee	Western	Sandy duplexes	19
Wittenoom Hills	WH	Mallee	Eastern	Sandy duplexes	29
Condingup	CO	Esperance Plains	Eastern	Pale sands	24

* soil unit defined in Griffin and Schoknecht (2000).

** OC (t/ha) estimated organic carbon in fine earth fraction of top 30 cm of soil under uncleared vegetation from Griffin and Schoknecht (2000).

Figure 1. Map of south-western Australia with soil carbon sampling locations.

Table 2. Summary of soil and vegetation at each study location.

Location	Soil	ASC*	Vegetation
Northampton	Pale yellow over yellow sand, > 2 m deep	Basic Regolithic Yellow-orthic Tenosol	<i>Banksia prionotes</i> woodland with many shrub species
Badgingarra	Grey over pale yellow sand, > 2 m deep	Basic Arenic Bleached- Orthic Tenosol	Proteaceae – Myrtaceae species-rich low heath
Brookton	Grey sand over sandy gravel over reticulite @ about 1 m	Acidic Ferric-Petroferric Bleached-Orthic Tenosol	Proteaceae – Allocasuarina - species-rich low heath
Mullewa	Yellow sand over reticulite @ about 1 m	Acidic Ferric-Reticulate Yellow-orthic Tenosol	<i>Acacia – Allocasuarina</i> shrubland
Merredin	Yellow sandy earth, > 2 m deep	Acidic Mesotrophic Yellow Kandosol	Shrubland
Newdegate (deep)	Shallow grey sand over sandy gravel over reticulite @ about 1 m	Ferric Mottled-Subnatric Yellow Sodosol	Mallee with Proteaceae shrubs
Newdegate (shallow)	Shallow grey sand over sodic clay $@ < 30 \text{ cm}$	Eutrophic Mottled-Mesonatric Grey Sodosol	Mallee with <i>Melaleuca</i> shrubs
Wittenoom Hills	Shallow grey sand over sodic clay $@ < 30 \text{ cm}$	Hypercalcic Mesonatric Grey Sodosol	Mallee with <i>Melaleuca</i> shrubs
Condingup	Grey sand over sandy gravel over clay or reticulite @ about 1 m	Ferric Eutrophic Yellow Chromosol	Banksia - species-rich heath

*Australian Soil Classification (ASC) (following Isbell, 2002)

The existence of reliable land use history was a criterion for location selection. The paucity of suitable locations with good land use history resulted in some locations with poor land use history being selected. The limited land use history in some cases was the result of little prior knowledge by a new owner.

Most locations had three land uses, an uncleared, short- cleared and long-cleared history. (The adjectives short and long were meant to be locally relative, not absolute as can be seen in Table 3.) The choice of two cleared land uses were in part compensation for the limited land use history, and also for the purpose of a more comprehensive sampling programme,

Table 3 outlines the land use history of the sampling sites.

4.2 SITE SELECTION

At each location possible sites were selected by interpreting landscape, vegetation and soil characters. Typically, a soil auger was used to select sites that were matched in terms of A, B and if possible the C horizons, not just the top 30 cm. Variable A horizon depth was the key issue in selecting similar sites. The sites within a location were usually within adjacent paddocks, and rarely more than a few kilometres apart.

4.3 SAMPLING METHODOLOGY

The sampling principals outlined by McKenzie *et al.* (2000) were followed as far as practicable. The sites were considered homogeneous if soil morphological characteristics were similar. The vegetation communities at each site were considered as part of a single stand of vegetation, not ecotones. Each site was sampled by a randomly located nest of four sampling points (pits) covering an area of approximately 10 m by 10 m. Soil pits were chosen instead of soil cores as they allow easy access for soil description and sampling.

At each sample point, a pit was excavated by backhoe to a minimum of depth of 1m and up to 2 m, depending on the ease of excavation. This was

Table 3. Land use history for sites at each location.

Location	and lise	*enA	l and lise Notes
Location	Land USC	Лус	
Northampton	Long	>20	Lupins-annual pasture occasional cereals
Northampton	Short	10	Approx age lupins-annual pasture occasional cereals
Northampton	Uncleared	0	Fenced
Badgingarra	Long	>25	Mostly annual pasture, crop cereals or lupins about 1 in 5
Badgingarra	Short	4	Fallow, and 2 cereal. poor annual pasture
Badgingarra	Uncleared	0	Fenced, burnt at time of clearing
Brookton	Long	>20	Currently lupins, mostly cereal-lupin-annual pasture, however last 4 years lupins-cereals
Brookton	Uncleared	0	Slightly modified by stock but fenced off for several decades
Mullewa	Long	>40	Cereal-lupins-annual pasture, currently annual pasture
Mullewa	Short	10	Cereal-lupins-annual pasture, currently poor lupins
Mullewa	Uncleared	0	Fenced, little stock damage evident
Merredin	Long	>40	Cereal-lupins-annual pasture, currently annual pasture
Merredin	Short	10	Approx age only cereal-lupins-annual pasture, currently annual pasture
Merredin	Uncleared	0	Unfenced slight stock damage since clearing
Newdegate (deep)	Long	17	Cereal-annual pasture occasional lupins
Newdegate (deep)	Short	5	Cereal-lupins
Newdegate (deep)	Uncleared	0	Fenced
Newdegate (shallow)	Long	11	Mostly cereal-lupins, 2 years annual pasture wind eroded prior to sampling
Newdegate (shallow)	Short	5	Cereal-lupins
Newdegate (shallow)	Uncleared	0	Fenced
Wittenoom Hills	Long	>20	Cereal-annual pasture
Wittenoom Hills	Short	10	Cereal-annual pasture
Wittenoom Hills	Uncleared	0	Fenced, in fire buffer strip but no evidence of degradation
Condingup	Long	31	Continuous annual pasture, with occasional barley @ about 1 in 5-7
Condingup	Short	11	Continuous crop about 2 lupins, 1 cereal
Condingup	Uncleared	0	Unfenced, little stock damage

*Age indicates years since clearing.

deeper than the 30 cm sampling depth required for the project. In all cases the pit depth was adequate to provide all necessary characterisation of the major morphological properties of the soil. The faces of the pits were used to obtain representative samples.

Additional sampling of the top 30 cm of the soil was undertaken due to higher concentrations and variability of organic carbon. This was achieved by a nest of four satellite shallow pits being dug within 1 m of the face of each deep pit. This provided 5 samples of the top 30 cm per sample point. Such sampling was intended to improve the representativeness of the samples rather than to obtain a measure of the variation at the micro-scale. The corresponding samples from these 5 pits were bulked in the field.

4.4 SAMPLING TIME

Sampling at each location occurred over less than a week, however, the sampling for whole project spanned about 6 months between September 2000 and February 2001. Thus, the sampling spanned the active growing to senescent phases of annual pasture and cropping systems. While this is less important for the uncleared native vegetation that consists mainly of perennial plants, there are still seasonal growth cycles. The importance of this issue stems from the seasonal variation in the amount of decaying roots. Samples from under an actively growing cereal would have most roots excluded from the fine earth fraction, while many roots in those samples from beneath a senescent crop could find their way into the fine earth fraction. This issue should be taken into consideration when interpreting differences between locations from this study.

4.5 SITE AND PIT DESCRIPTIONS

The landform characters of each site and soil profile characters were described in terms used by McDonald *et al.* (1990). As the sample points were very close together, the site characteristics were considered the same for each.

At each sample point (pit) the horizons (and sample intervals) were determined independently and recorded. For one pit at each site (usually the one at which a photograph was most easy to take), the profile was described in detail.

4.6 SAMPLE COLLECTION

This project was primarily focused on sampling the top 30 cm, however, sampling of the whole profile provided important characterisation of the organic carbon distribution at greater depth. Samples were contiguous and largely taken within morphological horizons, although the sample interval was limited to 10 cm at the surface and about 30 cm in the deeper layers. The sample depths were usually the same for each sample point (pit) in each site, unless there was a variation in the morphological boundary depths. Morphological boundaries were relatively horizontal. The top of the domed clays (at Newdegate (shallow) and Wittenoom Hills) provided the only concern for the sampling. In these cases, samples were taken from portions of the pits of the appropriate depth.

The presence of coarse fragments (up to 90% by weight) was not a significant influence on the sampling approach. This was because the coarse fragments were gravel or at largest cobble-sized and could be sampled with the fine earth without loss of representativeness. The variation in coarse fragment content conformed to the morphological horizons.

The presence of coarse organic matter, especially live roots, needed some consideration. According to the sampling protocol, live roots were not part of the soil organic carbon pool and thus should be excluded from the sampling. Dead roots were the opposite. Distinguishing between live and dead root material proved an impossible task, primarily because the mainly fine roots present were too small or numerous to distinguish their living status. The limited life of annual roots also confounded this sampling problem. The occasional presence of larger roots (5-10 mm diameter) appeared to influence variation in some of the bulk density sampling. Also by chance, one sample intercepted a decaying large root. In all cases, roots, dead or alive were included in the samples.

4.7 SAMPLE TYPES

Samples were taken for two primary purposes, organic carbon and bulk density determination. As the bulk density samples needed to be dried at 105°C, a temperature at which some organic carbon compounds volatilise, one sample could not satisfy both purposes. A dual sampling strategy was adopted, with one sample taken for bulk density and another sample taken for all other analyses.

For the majority of bulk density samples, cores 81 mm diameter and 100 mm long were hammered vertically into the mid-point of the sampling interval. Representative clods were taken for layers such as reticulite¹ that were too hard for the coring technique. One bulk density sample was taken from each sample interval at each sampling point. (Note no bulk density samples were taken from the shallow satellite pits.)

For the organic carbon samples, the samples from depths greater than 30 cm were taken from the pit face spanning the sample interval which each sample was meant to represent. For the top 30 cm, equal volume samples were taken from the four satellite pits and centre of the deep pit and bulked into three 10 cm depth intervals. The organic carbon samples were used for all analyses other than bulk density.

4.8 SAMPLE PREPARATION

Samples were collected in plastic bags and stored in the shade until transportation. Drying was initiated within a day of returning from the field.

The bulk density core samples were dried at 105°C for at least 48 hours and weighed when cool. Bulk density measurements for clods were obtained by the wax coating method. Unfortunately, most of the results obtained by the clod technique were much higher than could be expected (some greater than the specific gravity of silica) and the results were discarded as unreliable and estimates were made from a limited number of core samples.

The organic carbon samples were dried for at least five days at 40°C to moisture content mostly less than 2%. The fine earth fraction (< 2 mm) of the dried samples was separated from the coarse fraction by screening, and the coarse fragments were then segregated into organic and mineral fragments. These three fractions were retained for separate analysis. Bulked samples of the fine earth fraction for each sample point over the 0-30 cm depth interval were prepared for Jan Skjemstad, CSIRO Adelaide. In the field the soils were sampled every 10 cm over this 30 cm interval, and hence bulking an equal weight of fine earth from each 10 cm sample without considering the initial bulk density and coarse fragment % of sample would lead to bias. The formula for determining the weight of each fine earth sample used for creating a bulked 0-30 cm sample was determined as follows:

weight for each 10 cm sample = 25*bulk density*fine earth %/100 grams

4.9 ANALYTICAL METHODS

Except for the bulk density calculations, all sample preparation and analyses were performed by the Chemistry Centre of Western Australia under the supervision of Dave Allan. These were standard methods and are not documented here. Table 4 outlines the analyses conducted, the soil fractions on which they were conducted and the proportion of samples analysed.

1. Reticulite

A reddish, yellowish, grey and white mottled horizon common in the wheatbelt below surface gravels. The mottling has a reticulate (net-like) pattern. It has a 'gritty' field texture of sandy loam to sandy clay loam, but until textured often looks like a clayey horizon. Clay content usually increases with depth. When moist it is usually hard and brittle and can be augured or hand cut with a spade, however, it often hardens further on drying. Some ironstone gravel may be present but this feature is not diagnostic.

Table 4. Analyses and soil fractions analysed.

Analysis	Whole	Fine Earth	Coarse Mineral	Coarse Organic
Fine earth %	all			
Coarse mineral %	all			
Coarse organic %	all			
Moisture		all	some	some
Organic Carbon (W&B)		all	some	some
Mechanical analysis - sand, silt & clay		all		
Mechanical analysis – sand fractions		some		
Total N			some	some
Total P			some	some
Total K			some	
Total Fe			some	
Total Al			some	
EC (1:5)		some		
pH (1:5 water)		some		
pH (1:5 CaCl ₂)		some		
AI (1:5 CaCl ₂)		some		
Fe ₂ O ₃		some		
Al ₂ O ₃		some		
CaCO ₃		some		
CEC		some		
Exchangeable Ca		some		
Exchangeable Mg		some		
Exchangeable Na		some		
Exchangeable K		some		
Exchangeable Al		some		
Exchangeable Mn		some		
Saturation extract, Moisture		some		
Saturation extract, pH		some		
Saturation extract, ECe		some		
Saturation extract, Ca		some		
Saturation extract, Mg		some		
Saturation extract, Na		some		
Saturation extract, K		some		
Saturation extract, S		some		
Saturation extract, SAR		some		

W&B, represents Walkley and Black; N, Nitrogen; P, Phosphorus; K, Potassium; Fe, Iron; Al, Aluminium; EC,Electrical conductivity; Ca, calcium; CEC, Cation Exchange Capacity; Mg, Magnesium; Na, Sodium; Mn, Manganese; ECe, Electrical conductivity of saturation extract; S, Sulphur; and SAR, Sodium Absorption Ratio.

5. RESULTS

Appendix 1 provides the description of the study locations and sites and the morphology of each of the pits. Variations in the depths of samples between the sampling points (pits) at each location are provided in Appendix 2. This appendix also provides the data for bulk density of the sample, the organic carbon (following methods by Walkley and Black) of the several fractions and the clay content of the fine earth fraction. Appendix 3 provides data on the basic chemistry of the fractions (e.g. N, P, pH etc.) from the selection of samples for which there was more detailed analysis. Appendix 4 provides exchangeable cations and some saturation extract data from a selection of samples analysed.

5.1 COMPARISON OF ANALYTICAL RESULTS

This report provides data analysed in a commercial analytical laboratory, Chemistry Centre of Western Australia. The Chemistry Centre of Western Australia used the Walkley and Black method for organic carbon and mechanical analysis for clay content. Bulked samples of 0-30 cm provided to CSIRO Land and Water were analysed independently. These were analysed by CSIRO using the LECO method for organic carbon, and clay was estimated by mid infra-red method (MIR). A comparison of the results from the two laboratories is given below.

To allow comparison of the results over the 0-30 cm sampling interval, the Chemistry Centre of Western Australia data were mathematically bulked in the same way as the samples were bulked and provided to CSIRO (see sample preparation section above).

Organic Carbon

A previous study (Skjemstad et al. 2000) showed a close correlation between the results from these two methods and the same laboratories. The present data demonstrate a very similar correlation between the values from the composite samples (LECO) and the mathematically computed results from the component samples (W&B)(Figure 2). There is a strong linear correlation between the results of the two methods but the correlation is slightly worse than reported by Skjemstad et al. 2000. The discrepancy in correlation is probably related to the composite samples being used. The LECO results are a few percent higher than the Walkley and Black derived data. This is in accord with Skiemstad et al. 2000 who suggested a conversion factor of 1.12 to be applied to the Walkley and Black results from the Chemistry Centre of Western Australia.

Clay

The mid-infrared (MIR) estimates of clay content were commonly higher and sometimes much higher than those estimated by mechanical analysis. The measurements were strongly correlated in a curvilinear fashion (Figure 3).

Except for samples from the Wittenoom Hills location, all samples contributing to the 0-30 cm bulking were determined to be sand or sandy loams by field texturing methods. In this range of clay content, experience has shown the correlation between field texture and the Chemistry Centre of Western Australia mechanical analysis is typically good. We conclude that the MIR clay data are questionably high for many of the samples.

Figure 3. Comparison of results from CSIRO and CCWA laboratories respectively. Clay estimated by MIR compared to clay measured by mechanical analysis (%).

5.2 SIMILARITY OF SITES AT EACH LOCATION

There were some difference between soils at different sites within a location. Some of these differences were unavoidable due to the spatial separation of the sites and some were due to land use. A comparison of the soil characteristics independent of land use is briefly outlined below.

Northampton

These sites were in three separate paddocks and not very close to each other. From old aerial photographs, the vegetation appears similar. The short-cleared site appears to have been in reasonably good condition prior to clearing.

The clay content of the long-cleared site from 30–100 cm is about twice that of short-cleared and uncleared. This seems to be reflected in the exchangeable cations, total iron (Fe), total aluminium (Al), total potassium (K) and to a lesser degree total nitrogen (N) and total phosphorus (P) and coarse fragments.

The coarse fragment contents were very low in all samples, and the uncleared site had none. The pH below 1 m was lower for long-cleared than shortcleared or uncleared. This may be related to the clay content but it might also be due to the land use.

One sample point in the uncleared site intercepted a large decaying root. Consequently, higher organic carbon and lower bulk density were recorded for this pit. No detailed analyses were undertaken on this pit.

Badgingarra

The uncleared and short-cleared sites were in adjacent paddocks. From inspection of aerial photographs, the vegetation prior to clearing appeared quite similar in type and condition. The long-cleared site was somewhat removed, but it is assumed from the soil, landscape position and knowledge of the area that the vegetation had been similar. The long-cleared site had about half the clay content (5–10%) at 1 m depth as the short-cleared and uncleared sites. As a consequence it had lower exchangeable cations and possibly total Al at 1 m depth.

The long-cleared site had about 15% coarse fragments content, the short-cleared had about 8% coarse fragments content at depth, and the uncleared had none. This seemed to be paralleled by the total P values, which were very low for all. P content for the uncleared site was consistently two-thirds that of long-cleared and short-cleared.

The uncleared site had slightly higher pH values at depth than long-cleared and short-cleared sites. While this might be an effect of land use for longcleared sites, it seems unlikely for short-cleared sites because of the short time since clearing.

Brookton

The sites were quite close together. However, the condition of the uncleared site provided evidence that this area had been grazed at some time in the past and was recovering. There is no indication of what the long-cleared site was like before clearing.

The long-cleared site had a higher clay content at depth than the uncleared site, although this is not reflected consistently in the exchangeable cations.

The long-cleared site also had higher P and K values at depth than the uncleared site.

Mullewa

The short-cleared and uncleared sites were close together. The short-cleared site had very similar vegetation and condition prior to clearing. The longcleared site was somewhat remote, but apparently similar vegetation existed prior to clearing, given the evidence of the vegetation adjacent to this site.

The coarse fragments were closer to the surface for long-cleared than short-cleared or uncleared sites.

Merredin

All sites were quite close together and probably had similar vegetation. The uncleared site was in a narrow vegetated strip between paddocks with evidence of slight disturbance. It is likely that the short-cleared site was in similar condition to uncleared areas prior to clearing. All were quite similar in the soil properties measured.

Newdegate (deep)

The short-cleared and uncleared sites were close to each other and had very similar vegetation prior to clearing. The long-cleared site appeared to have similar vegetation from the evidence of adjacent remnant vegetation. From discussions with the land owner, the native vegetation prior to clearing appears to have been natural with little or no disturbance.

The clay B horizon was closer to the surface for short-cleared and uncleared sites than long-cleared sites, as was the peak values of total Fe and total Al. The EC of the uncleared site at depth was much greater than that of long-cleared or shortcleared sites.

Newdegate (shallow)

The long-cleared and uncleared sites were close together and the short-cleared site somewhat remote. The short-cleared site appeared to have similar vegetation from the evidence of adjacent remnants. The condition prior to clearing appears to have been natural with little or no disturbance. The clay content was similar at all sites. Total Al was higher at depth for short-cleared than long-cleared or uncleared sites. A narrow band of coarse fragments occurred at about 15 cm in the longcleared sample.

The uncleared site has much lower $CaCO_3$ at depth than long-cleared or short-cleared sites, even though pH values were similar. The salt levels (as measured by electrical conductivity –EC) was lower in uncleared sites at depth than long-cleared or shortcleared sites.

Wittenoom Hills

The long-cleared, short-cleared and uncleared sites were all close together and probably had very similar vegetation. The condition prior to clearing appears to have been good.

The short-cleared site had slightly higher clay content in the A and upper part of the B horizon. There was much higher exchangeable Ca in the A horizon of long-cleared land. Other exchangeable cations were similar between sites.

The coarse fragments fraction was slightly deeper for uncleared than long-cleared or shortcleared sites.

The long-cleared site had higher $CaCO_3$ content in upper subsoil than short-cleared or uncleared sites, but the pH was only slightly higher. Higher exchangeable Ca for long-cleared might be related to the CaCO₃ values. The EC was higher in the uncleared site at depth than in long-cleared or shortcleared sites.

Condingup

The uncleared and short-cleared sites were quite close together. The short-cleared site appeared to have had similar vegetation and to have been in similar condition prior to clearing. The long-cleared site was more remote. While there is no direct evidence of what the vegetation was, it is likely that it was of a similar good condition prior to clearing.

The B horizon (and highest clay content layer) is closer to the surface in the long-cleared than the short-cleared site, which is slightly closer to the surface than uncleared sites. This is reflected in the exchangeable cations data.

The coarse fragments fraction total Fe, total Al, total K and possibly total P follows similar patterns. The EC of the uncleared site at depth was much greater than among long-cleared or short-cleared sites.

5.3 COMPARISON BETWEEN LOCATIONS

Some of the differences between the sites (land use pairs) in terms of other parameters will be covered in discussion on the apparent impact of changing land use.

Most of the sites are reasonably well matched in terms of the soil properties. There is reasonable confidence that the vegetation condition prior to clearing was similar to that of the uncleared vegetation sampled for all sites but Brookton. At Brookton, it is likely that the condition of the native vegetation was better (less modified) in the areas now cleared than the area sampled for this study.

The main focus of this report is to present the organic carbon data from the paired sites and describe the degree of consistency between the locations in terms of the variations in some parameters between locations. Other apparent changes due to land use differences are also reported and discussed.

There are some key differences between locations that might be pertinent in considering the possible effects of land use.

The soils at all the locations studied have a sandy surface (at least 20 cm deep), however, that is where the similarity ends. The Badgingarra and Northampton soils are deep sand to less than 2 m, (Basic Arenic Bleached-orthic Tenosol, and Basic Regolithic Yellow-orthic Tenosol, respectively). The Mullewa soil is a moderately deep acid sand over gravel and reticulite at about 1 m, (Acidic Ferric-Reticulate Yellow-orthic Tenosol).

The Merredin soil is a deep sandy earth, with acid subsoil, (Acidic Mesotrophic Yellow Kandosol).

The Brookton, Newdegate (deep) and Condingup soils are shallow sand over gravels with generally clayey reticulite at about 1 m; Newdegate (deep) had a sodic subsoil (Acidic Ferric-petroferric Bleached-orthic Tenosol, Ferric Mottled-subnatric Yellow Sodosol and Ferric Eutrophic Yellow Chromosol, respectively). The Newdegate (shallow) and Wittenoom Hills soils are shallow sandy duplexes, both sodic and alkaline subsoils, (Eutrophic Mottled-mesonatric Grey Sodosol and Hypercalcic Mesonatric Grey Sodosol or Hypercalcic Subnatric Grey Sodosol, respectively).

The Badgingarra, Brookton, Condingup, Merredin, Mullewa, Northampton soils have acid soil reaction trends (surface soil has pH value lower than 7.0 and the deep subsoil has a pH less than 6.5, Northcote 1984), whereas the Newdegate (shallow), Newdegate (deep) and Wittenoom Hills have alkaline soil reaction trends (surface soil has a pH higher ten 5.0 and the deep subsoil has a pH value higher than pH 8.0). Amongst those with acid soil reaction trends, there were big differences with the Mullewa, Merredin and to a lesser extent the Brookton soils being very acid (pH CaCl₂ < 4.5) at depth. These low acid values can have a significant effect on crop or pasture production.

The clay B horizons of the Wittenoom Hills, Newdegate (shallow) and Newdegate (deep) soils have moderate electrical conductivity values at depth of 50 –150 mS/m. These values and the sodicity may affect crop and pasture growth. Other locations have negligible soluble salts.

The level of macronutrients (N, P, K) are low in most locations. Total K has the greatest variation between locations, which seems partly related to the variation in clay content, but is probably also related to the degree of weathering. Exchangeable cations vary greatly between location. This also is mainly because of the variation in clay content. The organic carbon dominates the exchangeable cations in the surface 10 - 20 cm, with Ca being the dominant cation. The subsoil exchangeable cations are dominated by clay. The base status varied greatly from 0.5 to 5 me/kg clay between locations. Those locations with sodic subsoils (Condingup, Newdegate (shallow), Newdegate (deep) and Wittenoom Hills) had higher base status values.

5.4 BULK DENSITY TRENDS

Before reporting the principal results, apparent changes in bulk density need to be considered. This is an aspect that can influence the validity of the comparison as well as how the comparison is made. In a case study, McKenzie *et al.* (2000) indicate that where there are bulk density changes and loss of soil (both likely results of changing land use from native vegetation to cultivated agricultural systems), direct comparisons of apparent paired sites may not be entirely valid. They show that equal depth comparisons can give an apparent difference in the organic carbon data, even if the only real difference is a change in the bulk density, e.g. by compaction. They argue that equivalent mass comparisons are more reliable.

Soil loss is a different issue that can be confounded with changes in bulk density. It is sometimes not possible to distinguish from bulk density results alone between a soil which has been compacted and one which has lost top soil. This is because on the one hand, compaction increases the bulk density of surface layers, while on the other hand, the lower bulk density surface soil has been lost, leaving higher density layers in its place.

It was concluded that adjustments to either the sampling methodology or comparison of results were fraught with uncertainties. The important issue is that the possibility of an apparent result being the product of changes in the degree of compaction needs to be pointed out. To that end, any changes in the bulk density are presented first.

Typically, the bulk density was lower at the surface than in the deeper layers (Appendix 5). There was a large variation in the measured bulk density from samples at the same depth at the same site and the same location. While this representation might appear reasonable, some of the presented variation will be due to the profiles from each replicate in each land use at each location not being perfectly matched. For example, the depth to gravel layers varied slightly, as did the amount of gravel and the depth to texture contrast layers. Care should be taken in inferring anything about the variation in bulk density in a single profile or the variation in determining the bulk density from this presentation of the data.

These provisos aside, it appears that sandy and earthy soils (Northampton, Badgingarra and Merredin locations) generally had more consistent bulk density values than soils in other locations, especially in the subsoil. The heavier textured subsoils were commonly reticulite, heterogeneous to some degree and often had evidence of root channels and/or preferential flow channels. The surface layers of all soils had a moderate variation in bulk density values. Subsoils with significant coarse mineral fraction appeared to have the greatest variation.

There were also some apparently consistent differences between land uses, mainly for surface layers. The bulk density for uncleared sites is mostly (except for Wittenoom Hills) lower than that of short-cleared or long-cleared sites. Differences in soil variables between land uses appear to be minimal by 20–30.

Bulk density values can be influenced by a number of parameters including the amount of organic matter, clay, coarse mineral fragments and structure of the soil layers.

These data, both from most individual locations and across locations, suggest that the bulk density is negatively related to the organic carbon and coarse organic matter content. However, in these data the bulk density, organic carbon and coarse organic matter are all correlated with depth; the bulk density positively and the others negatively. Looking more closely, the apparent relationships seem to differ for the different land uses, with the uncleared sites having lower bulk density values for the same level of organic carbon.

Hence it is difficult to demonstrate a direct relationship between land use and bulk density values. However, as clearing for agriculture influences the structure of surface layers of soil, it is speculated that this is the main influence on changes in bulk density in short and long-cleared and uncleared sites. Organic carbon appears to be possibly modifying this influence, but is not the main factor controlling the bulk density changes.

Regarding the confounding effects of compaction and soil loss on bulk density discussed above, it is speculated that there would be a 1-2 cm compaction from the observed 5-10 % increase in bulk density changes in the top 20 cm of soil, were there to be no soil loss. If this were the only change, the compaction would slightly reduce the organic carbon concentration (as wt %) in the surface samples through the inclusion of additional soil with lower concentration. On the other hand, it would result in slightly increased organic carbon density (as e.g. t/ha over a given depth). The amount of increase would be less than the 5-10 % increase in bulk density.

5.5 FINE EARTH ORGANIC CARBON (WT %)

The organic carbon in the fine earth fraction was concentrated at the surface, where the greatest variation occurred (0.5 to 1.5%), falling to generally less than 0.5% by 50 cm (Appendices 2, 6). The decline with depth roughly followed a set of negative power curves (Appendices 2, 6). At some locations there were obvious relative concentrations at depth (e.g. Brookton, Condingup and Newdegate (deep)). This mostly occurred at the top of the B horizon for texture contrast or top of the gravel layer for gravelly soils.

There were no consistent trends between sites in the organic carbon related to land use for the top 10 cm. Some locations seemed to have a consistent trend of increasing organic carbon with increasing time of clearing (Wittenoom Hills, Condingup, Merredin and Brookton). However, Brookton should be considered an artefact of low values for uncleared samples. Some sites had consistent trends the other way (Mullewa and Newdegate (shallow)). These seem to be due to the very low pH of Mullewa soils, and wind erosion events for Newdegate (shallow)).

The remainder of the sites appeared to have similar values for all land uses (Badgingarra, Newdegate (deep) and Northampton).

Below 10 cm, the organic carbon in the fine earth fraction in uncleared land was mostly slightly higher than, or at least equivalent to that of sites with other land uses.

5.6 CUMULATIVE FINE EARTH ORGANIC CARBON (AS T/HA)

The organic carbon per unit volume was calculated and a cumulative value (t/ha) by depth and is presented in Appendix 7 for each combination of location and land use. A summary of the findings are presented in Table 5. All of the curves in Appendix 7 flatten out with increasing profile depth. However, none become entirely flat, indicating that the total organic carbon in the fine earth of the profiles is probably 5 to more than 20 t/ha greater than the amount in the top 1 m. At this rate, the organic carbon in the top 30 cm appears to represent about half that in the whole profile.

The variation in the estimates of the carbon pool among sites was found to be 20-30 % (Table 5), even in the same site (land use) at the same location.

These cumulative curves (in Appendix 7) show no consistent differences due to land use. A general trend appears to be that the organic carbon in the uncleared sites is less than or equal to that of the cleared sites in the surface, but the situation is gradually reversed (greater than or equal to) as the deeper soil is taken into account. This is attributable to the fact that native vegetation exploits the soil to a greater depth than annual agricultural plants.

There were significant differences in the cumulative organic carbon per unit area between locations, mainly in the top 10 cm (Figure 4). For the uncleared sites, cumulative organic carbon per unit area at Wittenoom Hills was more than twice the lowest (Brookton) and about 50% more than that at most other locations. (Brookton was disturbed by grazing many years ago and appears to be have yielded a

Location Name	Land Use		by 10 c	m		by 30 cr	n		by 100 cm		
		min	mean	max	min	mean	max	min	mean	max	
Northampton	L	8	11	13	16	19	21	28	32	33	
Northampton	S	9	10	10	14	16	17	22	24	25	
Northampton	U	8	10	11	17	19	22	28	36	56	
Badgingarra	L	11	11	12	18	18	19	26	28	31	
Badgingarra	S	10	10	11	17	19	20	30	32	34	
Badgingarra	U	9	10	12	16	18	21	27	29	32	
Brookton	L	9	11	12	14	18	19	21	24	26	
Brookton	U	7	8	8	13	14	14	20	21	22	
Mullewa	L	7	8	9	15	16	17	21	22	23	
Mullewa	S	7	8	8	16	18	19	26	28	30	
Mullewa	U	10	11	13	21	24	27	34	39	43	
Merredin	L	11	12	13	20	21	22	29	30	31	
Merredin	S	12	14	16	24	26	29	34	36	38	
Merredin	U	9	9	9	20	20	20	30	32	35	
Newdegate (deep)	L	12	13	14	17	19	20	29	33	37	
Newdegate (deep)	S	11	12	13	17	19	23	25	28	36	
Newdegate (deep)	U	7	11	17	14	19	25	25	27	32	
Newdegate (shallow)	L	10	11	12	19	21	25	27	32	38	
Newdegate (shallow)	S	11	13	15	20	23	27	26	33	37	
Newdegate (shallow)	U	14	17	22	29	33	35	38	45	52	
Wittenoom Hills	L	16	20	22	26	34	42	31	42	51	
Wittenoom Hills	S	14	18	21	25	31	34	31	41	47	
Wittenoom Hills	U	15	17	18	30	34	38	40	44	50	
Condingup	L	12	14	14	20	22	23	29	34	36	
Condingup	S	12	14	16	20	23	25	35	39	45	
Condingup	U	9	9	11	18	20	21	33	35	37	

Table 5. Cumulative organic carbon (t/ha) summarised by location and land use.

L represents long-cleared site; S, short-cleared site; and U, uncleared site.

lower biomass than might otherwise have been expected for that plant community.) Among longcleared sites, cumulative organic carbon per unit area at Wittenoom Hills was also more than twice the lowest (Mullewa) and about 50% more than most other locations. The sandy duplexes at the Wittenoom Hills and Newdegate (shallow) locations appear to have more organic carbon than the deep sands at the Northampton and Badgingarra locations.

Figure 4a. Cumulative organic carbon (W&B,%) of fine earth fraction by depth - Uncleared sites.

Figure 4b. Cumulative organic carbon (W&B,%) of fine earth fraction by depth - Short-cleared sites.

Figure 4c. Cumulative organic carbon (W&B,%) of fine earth fraction by depth - Long-cleared sites.

5.7 COMPARISON OF FINE EARTH ORGANIC CARBON VALUES WITH THAT FROM PREVIOUS STUDY

The locations in this study were chosen as examples of soils in different ecological regions of southwestern Australia. A previous study (Griffin and Schoknecht 2000) presented a compilation of the organic carbon (using Walkley and Black methods) in the fine earth fractions in uncleared vegetation from different soil types in different IBRA regions.

Appendix 8 presents the current data (as individual sample values of organic carbon (wt %) plotted against depth) with that from comparable IBRA regions and soil types from the previous study. The Condingup and Mullewa locations had negligible comparable data from the earlier study. Of the other locations, the scatter of the data points was roughly within that from the earlier study. Only the Badgingarra location appears to have consistently lower values, which suggests the Badgingarra location might be slightly at variance with the data that of the previous study. The significance of this difference is unknown.

Cumulative organic carbon content for the top 30 cm of soil under uncleared vegetation, as derived by Griffin and Schoknecht (2000), are provided in Table 1. The data is broadly similar to that of the uncleared land use sites from the current study. Some locations had lower values in the current study (Badgingarra, Brookton) and some had higher values (Northampton, Newdegate (deep). This suggests that the previous study reported values of an appropriate order of magnitude.

5.8 COARSE ORGANIC MATTER

Coarse organic matter was concentrated at the surface, where it is 0.1 to over 8% of the whole soil, usually reducing rapidly to less than 0.1% by 50 cm (Appendix 9). This was characteristic of all sites.

There were, however, distinct differences between land use sites in the amount of coarse organic matter. Most of the uncleared sites had more coarse organic matter, especially below 10 cm. There was consistently more coarse organic matter throughout the profile in uncleared than short-cleared or long cleared sites at Badgingarra, Brookton, Mullewa, Northampton, and Wittenoom Hills locations. For Condingup, Merredin, Newdegate (deep) and Newdegate (shallow) locations, the amount of coarse organic matter was consistently greater in uncleared than short-cleared or long-cleared sites below 10 cm.

Some of the coarse organic matter was clearly live roots. The determination of dead or live roots was extremely difficult and could not be resolved without detailed study. Field observations suggested that there appeared to also be more dead roots in the uncleared than in the other land uses. It was also often noted that there were more dead roots of perennial plants in short-cleared than in longcleared sites.

There appears to be significant differences between locations in the amount of coarse organic matter (Figure 5), even though there is a lot of overlap in the data. The differences were across land uses and were greatest for the surface layers. For the uncleared sites, the sandy soils (e.g. Northampton and Badgingarra) appeared to have the most coarse organic matter and the duplex soils (e.g. Wittenoom Hills, Newdegate (shallow) and Newdegate (deep)) tend to have the least. This suggests soil type has a strong influencing on root densities independent of vegetation type/land use. This could reflect the differences in the disposition and concentration of available nutrients and moisture. (Brookton was overlooked in this analysis for it appears to be atypically low because of prior grazing.). It must also be considered possible that these results are confounded by the differences in the time of the year at which the sampling was undertaken for the crops in the cleared sites were annual species with roots which begin to decay in summer. Badgingarra and Northampton were among the earliest sampled (winter) and Wittenoom and Condingup were the latest (summer).

The levels of organic carbon in these samples varied greatly and there were no clear differences between land uses (across locations). However, the nitrogen and phosphorus content of the coarse organic matter between land uses were very different, especially between uncleared and long cleared sites (Figure 6a). This shows both differences in the absolute values of these two elements and in the relationship between them. The short-cleared samples analysed were intermediate between uncleared and long-cleared and were closer to that of the uncleared in terms of nitrogen and phosphorus levels. The organic carbon-nitrogen ratios showed clear differences between the land uses (Figure 6b).

The organic carbon, nitrogen and phosphorus composition differences probably reflect the differences in root type. It was noted that the coarse organic matter of the uncleared sites was dominated by roots of perennial plants and the long-cleared sites had mainly roots of annual crops and pasture species.

While these data are interesting in themselves, the differences in type and composition will probably affect the rate of decomposition, something which could conceivably affect the modelling of the organic carbon pool.

Figure 5a. Coarse organic matter (% of whole soil) by depth - Uncleared sites.

Figure 5b. Coarse organic matter (% of whole soil) by depth - Short-cleared sites.

Figure 5c. Coarse organic matter (% of whole soil) by depth - Long-cleared sites.

Figure 6a. Composition of coarse organic matter by land use: total N versus total P, with organic carbon indicated by size of points.

Figure 6b. Composition of coarse organic matter by land use: Carbon Nitrogen ratio versus P values

5.9 FINE EARTH ORGANIC CARBON AND COARSE ORGANIC MATTER

The fine earth organic carbon and coarse organic matter are potentially in equilibrium, with the organic carbon dependent on the balance between the rate of production and decomposition of the coarse organic matter. With the coarse organic matter of the uncleared and long-cleared being of apparently different composition (Figure 6), the rate of decomposition, and therefore the relationship between fine earth organic carbon and coarse organic matter, might be expected to be related to land use. Appendix 10 shows that for most locations, this relationship is mostly different for uncleared sites than for the cleared sites. The slopes of the regressions of organic carbon in the fine earth on coarse organic matter in the soil for the uncleared sites were about a quarter of that of the cleared sites.

The uncleared sites had more woody roots, both dead and alive. The live roots are not obviously decaying. Dead woody roots decay more slowly than the softer annual roots.

Figure 7 shows that the relationship between fine earth organic carbon and coarse organic matter also differs greatly between locations. These show that land use is apparently not the dominant factor in this relationship.

Curiously (or perhaps more importantly), the variation between locations (as represented by the slope of the regressions) is more or less independent of land use. That is, the steeper sloped regressions for the uncleared sites tended to be from the same locations as the steeper sloped regressions for the cleared sites.

Figure 7a. Organic carbon (W&B,%) of fine earth fraction by % coarse organic matter - Uncleared sites.

Figure 7b. Organic carbon (W&B,%) of fine earth fraction by % coarse organic matter - Short-cleared sites.

The sandy duplex soils (e.g. Wittenoom Hills and Newdegate (shallow) locations) have the steepest regression slopes and the deep sands (e.g. Badgingarra and Northampton) have the flattest regression slopes. This suggests that the organic carbon equilibrium is dependant on the soil type. In contrast, an investigation of the relationship between organic carbon and clay content did not provide an obvious relationship. There could be some confounding of the results due to climate, however, rainfall seems not likely to be the major influence as all locations were relatively dry (< 500 mm annual rainfall). The difference between locations of this relationship appears to parallel the difference between location in the concentration of organic carbon (Figure 4). Just as with that relationship, the sandy duplexes (Wittenoom Hills and Newdegate (shallow)) appear to have more organic carbon per unit of coarse organic matter than the deep sands (e.g. Northampton and Badgingarra). To a limited degree, these trends are the inverse of the relative abundance of coarse organic matter at the locations.

5.10 ORGANIC CARBON IN COARSE MINERAL FRACTION

An analysis by Pate *et al.* (2001) of the coarse mineral fraction (usually lateritic (ferruginous) gravels in south-western Australia) showed there to be significant organic carbon present. Close examination has demonstrated that some of this is from the remnants of tightly adpressed cluster roots. Bacteria have also been shown to exist within the rind of the gravels. The concentration of organic carbon has been generally higher than in the surrounding fine earth. To confirm these findings, a proportion of the coarse mineral fraction was analysed for a number of elements including organic carbon.

There is a general trend of declining organic carbon (wt %) in the coarse mineral fraction with depth (Appendix 11; the raw data for these are in Appendix 2). Also for most locations, the organic carbon (wt %) in this fraction was greater than that in the fine earth fraction, especially for the upper parts of the soil. Those locations for which this was not the case were Newdegate (shallow), Wittenoom Hills and Newdegate (deep). Newdegate (shallow) and Wittenoom Hills were both shallow duplexes with the coarse fraction being mainly carbonate or silcrete. However, the coarse mineral fragments for Newdegate (deep) was lateritic and very abundant.

The organic carbon of the coarse mineral fraction in the uncleared land use sites appeared to be consistently higher than in the cleared land use sites but the variations were too great to be confident of this. If this were a real difference, it might mean that the organic carbon in the coarse fragments is depleted with time since clearing, and/or the root systems of agricultural annual species are not developing as strong an association with the gravels as do some of the native plant species.

5.11 CUMULATIVE ORGANIC CARBON (AS T/HA) IN WHOLE SOIL

The coarse fractions, both organic and mineral, can contain significant organic carbon in addition to that of the fine earth fraction. The limited analysis of the coarse fractions allowed tentative estimations of the organic carbon in each of these fractions at each location. From these, the total weight of organic carbon was estimated for each sample. This was converted to t/ha from which cumulative values were generated for increasing depths.

Appendix 13 shows the increase in these estimates of organic carbon in the whole soil by depth for each location and land use combination. As for the cumulative curves for the fine earth organic carbon, this shows that the organic carbon had not reached a plateau by the depths (1–2 m) sampled.

Clearly, most organic carbon is in the fine earth fraction. For some locations almost all organic carbon is in this form (Appendix 13). However, the proportion of the whole soil organic carbon represented by the fine earth organic carbon varies with coarse fragment content, depth, location and land use.

Appendix 14 shows the percentage of organic carbon in the three fractions (fine earth, coarse organic fragments, coarse mineral fragments) in each sample for each combination of location by land use. Both coarse fragment types can contribute significantly to the organic carbon in different parts of the profile. The coarse organic matter is most important at the surface. Its contribution varies greatly from about 10 to 50 % of the organic carbon, but declines to negligible levels by 1 m. Where coarse mineral fragments are present, this fraction can be a significant or even the dominant part of the total organic carbon in a sample. This is related to the amount of coarse mineral fragments present, and commonly occurs in the mid- to lower-portion of the profile. It should be noted that the peak concentrations from this fraction appear to be at or near the upper portion of the coarse mineral fragments layer (Appendix 15).
The cumulative data demonstrate some differences apparently due to land use (Appendix 13). Typically, the uncleared land use site has a lower proportion of the whole soil organic carbon in the fine earth fraction than the cleared land use sites. This is obviously due to the higher contribution from the coarse organic matter and some extra from the higher concentrations in the coarse mineral fragments.

5.12 OTHER DIFFERENCES RELATED TO LAND USE

A number of other variables appear to have values influenced by the different land uses. Most of these should be considered tentative as they come from analysis of samples with only one replicate from each location and land use combination.

Electrical Conductivity

Very little difference in electrical conductivity (EC) values was apparent between land uses, except for some locations at depth (Appendix 16). Condingup, Newdegate (deep) and Wittenoom Hills all had higher EC values (about twice) at depth for the uncleared than the cleared sites. For Newdegate (shallow) the opposite situation was the case. It should be noted that all these locations mentioned were the only ones that had significant salt in the subsoil. It is speculated that these apparent effects might be influenced by the different moisture status observed for the land uses, as pits dug in areas of uncleared native vegetation were mostly drier than those in areas cleared for agriculture.

рΗ

There were some differences in pH values between land uses but no consistent depression of pH was obvious in the subsoil for long-cleared or shortcleared sites compared to uncleared sites (Appendix 17). There were, however, differences in pH due to land use which appeared related to the pH characteristics of the locations. The pH was consistently lower for soils between 10 and 100 cm in long-cleared sites from locations with acid soil reaction trends and only moderate acidity (Badgingarra, Brookton, Condingup & Northampton), compared to the uncleared sites. The short-cleared sites tended to have an intermediate degree of depression in pH values for these locations. For sites with acid soil reaction trends that were strongly acid (Merredin & Mullewa), there was no obvious differences in the pH between land use sites. This suggests that the amount of H+ added by pasture species and fertilizer was insignificant compared to the native soil.

Among the alkaline soil reaction trend locations, the pH trends of long-cleared compared to uncleared sites were inconsistent. For Newdegate (shallow), long-cleared sites were more acidified, for Newdegate (deep), there were no obvious differences, and for Wittenoom Hills, long-cleared sites were more alkaline. The latter could be explained if alkaline subsoil had been incorporated into the topsoil by deep ripping.

Macronutrients

Analysis of macronutrient levels showed some differences between land use sites (Appendices 18, 19 and 20). This was mainly the case for total P, which in the top 10 to 30 cm was clearly greater in the short-cleared and long-cleared sites than the uncleared samples. Total N showed similar trends but not so clearly. Total K showed no consistent trends that could be associated with land use. Mullewa was one location that appeared inconsistent for both N and P, there being little difference between land use sites. This location was notably amongst the more nutrient-rich of the sites sampled. It is on a farm which has a low fertilizer usage record. The nutrient values of the cleared land use sites are in part due to the nutrient inputs, and the elevated values of the long cleared sites are probably a reflection of this. The apparent elevation in nutrient values, especially total P, might be an indication of the amount of nutrient input, however, caution should be used in considering this link, for the ability of the soil to retain the nutrients must be considered also.

Fe and Al

There were no obvious differences in the total Fe and total Al related to land use. Extractable Al was only measured in those samples with low pH values on the assumption that where the pH is higher, there is negligible extractable Al (Appendix 21). From the limited data from four locations, there were apparently divergent influences of land use. From Condingup and Brookton, there is a suggestion that extractable Al is increased by clearing. In contrast, no obvious difference occurred at Mullewa or Merredin. These data parallel the apparent depression in pH for moderately acidic soils (Condingup and Brookton), and no depression for strongly acidic soils (Merredin and Mullewa) following clearing.

Exchangeable Cations

No significant differences were detected in the level of exchangeable cations due to land use (Appendix 22). There is a suggestion from some locations (e.g. Northampton, Brookton, Mullewa, Merredin and Wittenoom Hills) that there were higher exchangeable cations (mainly calcium) in the surface layers for the cleared land use sites. Organic matter is the dominant exchange material in these layers. However, this elevation in the exchangeable cation levels is not parallelled by either increases in fine earth organic carbon or coarse organic matter levels. Should the higher exchange capacity of the surface be real, the difference in the nature of the organic matter (crops versus perennial shrubs) as reflected in the N and P values of the coarse organic matter might be a contributor to this elevated value.

6. DISCUSSION

This study has provided significant new documentation of the organic carbon pool for a selection of soils subject to different land uses in drier parts of south-western Australia. The study demonstrated that most of the soil carbon occurs in the top 10-30 cm of the soil profile, but significant amounts occur at depths to at least 1 m. The fine earth fraction is considered to contain most of the carbon pool, however, significant amounts are also present in the coarse organic matter and coarse mineral fragments. The latter is part of a phenomenon recently documented by Pate et al. (2001), who demonstrated an association between the roots of native plants and the ferruginous coarse fragments. With there still being significant organic carbon in these ferruginous coarse fragments in areas cleared decades before, there is either strong persistence of this carbon, or a continuing relationship between pasture and crop plants with the gravel.

The organic carbon values reported here are consistent with those reported in Griffin and Schoknecht (2000), which used a limited study methodology. Both of these studies used the Walkley and Black method for determining soil carbon levels, which appears to provide a few percent lower than that derived from the LECO method.

Differences in soil properties occurred when land use changed from native vegetation to annual pasture or cropping systems. The bulk density of the surface layers commonly were greater in the cleared than in the uncleared soils. There was generally a slight increase in the fine earth organic carbon (as wt %) of these surface layers, which is inconsistent with compaction of the surface layers, or even soil loss. It is argued that for most of the locations sampled, there was an increase in this organic carbon because of the changed land use.

The total organic carbon pool (as t/ha) appears to not have changed greatly even after 30 or more years since clearing. In most locations the organic carbon in the fine earth fraction of the whole profile remained relatively unchanged, however, there appears to be slightly more in the surface layers and less in the deeper layers. This is supported by similar changes in the type and distribution of root systems.

In some soils there was a significant depletion of organic carbon following clearing. This was observed at Mullewa which had strongly acidic soil even under native vegetation. It is suggested that this decline is in part caused by the strongly acidic soil being hostile to good growth of agricultural plants but not to native species. The Mullewa property also appears to have received relatively low levels of fertiliser inputs, which may contribute to the lower soil carbon levels through lower crop and pasture production.

Some other soil properties appear to be changed by clearing. The nature of soil acidification of the top 50 cm, which also involves an increase in the amount of extractable Al, was observed in these data. This acidification is well documented, apparently being related to increased nitrogen fixation and fertilizer inputs from land holders. However, this was not observed for the alkaline or highly acidic soils, only those with moderately acidic soil.

Acidification is influenced by the pH buffering capacity, which in turn is a function of clay and organic matter content. The possible influence of the changes in organic carbon and coarse organic matter on the differential rate of acidification was not investigated here but might be a worthwhile exercise in the future.

The bulk density increases observed in the top 30 cm of soil after clearing were inconsistent with the increased fine earth organic carbon values for the surface soil under agriculture. Typically, organic matter would be expected to decrease the bulk density, however, it appears that increased bulk density was due to reductions in soil structure and increased compaction under agriculture.

7. CONCLUSIONS

There are a number of useful findings from this study:

- The type and distribution of soil organic carbon in the top 1–2 m of a range of sandysurfaced soils in south-western Australia is now documented;
- The fine earth fraction of the top 30 cm typically contains the majority of the carbon but significant amounts are also present in coarse organic matter and ferruginous gravels;
- The variation in most soil parameters
 measured at the same site (i.e. between
 sampling points) was commonly 10 30%.
 This was of a similar order of magnitude to
 the findings of Griffin and Schoknecht (2000).
 This suggests that the relative value of the
 detailed sampling methodology should be
 considered;
- Changes in soil carbon due to the clearing of native vegetation and establishing annual agricultural systems were observed, but were of minor extent;
- The total carbon pool was changed little by the change in land use from native vegetation to agriculture, except that under agriculture there appeared to be more in the top soils and less coarse organic matter at depth;
- The bulk density of the surface layers were mostly increased by the change in land use from native vegetation to agriculture; and
- Changes to soil chemistry were generally minor. Acidification appeared to be limited to those soils that were initially moderately acid, but not alkaline or strongly acid soils.
 Fertilizer inputs, particularly phosphorus, are reflected in the soil macronutrient analysis.

8. RECOMMENDATIONS

KEY DELIVERABLE: FUTURE MONITORING

A requirement of this study was to make recommendations of future monitoring and especially whether any of the current paired sites should continue to be monitored.

Monitoring programs are expensive to maintain, and a clear examination of purpose and the costbenefit of the monitoring program needs to be assessed. There is some virtue in continued monitoring of the paired sites as input for *Roth-C* or other soil carbon models, but this would require detailed recording of land use inputs and exports, and significant resources.

The current study includes both short and longcleared paired sites, which show limited differences in organic carbon as a result of land use. The expense of monitoring of these areas in the long term, therefore, appears unjustified.

Recommendation 1

That no further monitoring of the paired sites for the purpose of understanding soil organic carbon be undertaken.

There is currently very little land clearing in southwestern Australia and it is more than 20 years since significant land clearing occurred. In that light, land clearing is only a minor contributor to greenhouse gas emissions in south-western Australia. Changes in farming systems are likely to be far more significant contributors to soil carbon changes. There is, therefore, merit in investigating the changes in soil carbon due to changing farming systems across a full range of soil types. The current study focused on sandy-surfaced soils.

Recommendation 2

Develop a monitoring program to assess changes in soil carbon (in conjunction with programs looking at other soil factors) with the development of sustainable farming systems across a broad range of soil types.

The intensity of sampling needs some consideration in future studies. This study provided much documentation about a few sites for a particular purpose. For other purposes, greater cost-benefits would be obtained from more locations sampled less intensively.

Recommendation 3

The intensity of sampling needs to be tailored to the purpose of the study; e.g. more samples for documentation, less for modelling.

KEY DELIVERABLE: PROPOSED ARRANGEMENTS FOR ARCHIVING SAMPLES

The future of the samples from this project need to be considered. The Chemistry Centre of Western Australia maintains a significant archive of samples that can be made available for later studies. There has already been an inquiry on the use of the samples from the present study. Normally the Chemistry Centre of Western Australia provides samples at its own discretion, especially years after the initial collection. Issues of ownership and the cost of storage and retrieval need to be negotiated in relation to the current samples.

Recommendation 4

The current samples should continue to be archived by the Chemistry Centre of Western Australia and negotiations on ownership and cost of storage and retrieval be undertaken. No material should be used for any purpose until an agreement between the Australian Greenhouse Office, Department of Agriculture, Western Australia and the Chemistry Centre of Western Australia has been reached.

9. REFERENCES

- Griffin, E.A and Schoknecht, N.R. (2000) Soil Carbon Estimates for Soils in IBRA regions (WA).Unpublished report for Webbnet and Australian Greenhouse Office. Agriculture Western Australia Project 2000141
- Griffin, E.A, Laing, I,A, Schoknecht, N.R and P.M.
 Goulding (2000) Estimating Changes in Soil Carbon Resulting from Changes in Land Use, Project 5 - Land Use Management Information, Western Australia.
 Unpublished report for CSIRO Land and Water and Australian Greenhouse Office. Agriculture Western Australia Project 2000142
- Isbell R.F. (2002). Australian soil and land survey field handbook: The Australian soil classification. CSIRO Publishing, Collingwood, Victoria.
- Jenkinson, D.S. (1990). *The turnover of organic carbon and nitrogen in soil*. Philosophical Transactions of the Royal Society of London B, 329: 361-368.
- Jenkinson, D.S. and Coleman, K. (1994). Calculating the annual input of organic matter to soil from measurements of total organic carbon and radiocarbon. European Journal of Soil Science, 45: 167-174.
- McDonald, R.C., Isbell, R.F., Speight, J.G., Walker, J. and Hopkins, M.S. (1990). *Australian soil and land survey field handbook*. Inkata Press, Melbourne.
- McKenzie, N, Ryan, P, Fogarty, P and Wood, J (2000) Sampling, Measurement and Analytical Protocols for Soil Carbon, Litter and Coarse Woody Debris Estimation. Unpublished report for Australian Greenhouse Office.

- Pate, J.S., Verboom, W.H. and Galloway, P.D. (2000) Co-occurrence of Proteaceae, laterite and related oligotrophic soils: coincidental association or causative inter-relationships? Aust. J. Bot 49:529-560.
- Skjemstad, J.O., Spouncer, L.R. and Beech, A. (2000) Carbon Conversion Factors for Historical Soil Carbon Data. National Carbon Accounting System Technical Report No. 15. (18p.) Australian Greenhouse Office: Canberra.
- Thackway, R. and Cresswell, I.D. eds. (1995) An Interim Biogeographic Regionalisation for Australia: a framework for establishing the national system of reserves, Version 4.0. Australian Nature Conservation Agency, Canberra. (http://www.environment.gov.au/bg/nrs/ ibraimcr/ibra_95/)

APPENDIX 1

Description of Locations and Sampling Points

Descriptions Generated from the Department of Agriculture, Profiles Database

TABLE OF CONTENTS

Location	Land use	Pit	Page No.
Badgingarra BA	Long-Cleared	Pit 2	33
Badgingarra BA	Short-Cleared	Pit 2	35
Badgingarra BA	Uncleared	Pit 1	37
Brookton BR,	Long-Cleared	Pit 2	39
Brookton BR	Uncleared	Pit 2	41
Condingup CO	Long-Cleared	Pit 1	43
Condingup CO	Short-Cleared	Pit 1	45
Condingup CO	Uncleared	Pit 1	47
Merredin ME	Long-Cleared	Pit 3	49
Merredin ME	Short-Cleared	Pit 1	51
Merredin ME	Uncleared	Pit 1	53
Mullewa MU	Long-Cleared	Pit 3	55
Mullewa MU	Short-Cleared	Pit 1	57
Mullewa MU	Uncleared	Pit 3	59
Newdegate (Deep) ND	Long-Cleared	Pit 2	61
Newdegate (Deep) ND	Short-Cleared	Pit 4	63
Newdegate (Deep) ND	Uncleared	Pit 1	65
Northampton NH	Long-Cleared	Pit 4	67
Northampton NH	Short-Cleared	Pit 1	69
Northampton NH	Uncleared	Pit 2	71
Newdegate (Shallow) N	Long-Cleared	Pit 4	73
Newdegate (Shallow) NS	Short-Cleared	Pit 1	75
Newdegate (Shallow) NS	Uncleared	Pit 4	77
Wittenoom Hills WH	Long-Cleared	Pit 4	79
Wittenoom Hills WH	Short-Cleared	Pit 2	81
Wittenoom Hills WH	Uncleared	Pit 2	83

Attachment A: Profile Photos for Representative Pits from each Location85

Project & Site Code: SC2 BAL2

Described by: Bill Verboom Date: 10/10/2000

Observation Type/Category:	soil pit, full description			
Lab Analyses:	Limited chemical and physical analyses			
Location:	MGA Zone: 50 355855 mE 6641040 mN			
Locations Notes:	Badgingarra, Tom Plant			
Site Notes:	FRAME: 6-10			
Disturbance:	Complete clearing; past cultivation			
Landform				
Landform pattern:	pediment	Slope:	2 %	
Relief/modal slope:	undulating low hills			
Landform element:	hillslope	Slope length (m):	150	
Morphological type:	lower slope	Slope curvature:	concave slope	
Relief:	50 m	Pattern Relief:	pediment	
Surface and Hydrological Proper	ties			
Rock outcrop:	0 %			
Surface coarse fragments:	no coarse fragments gravels			
Physical properties:	Water repellent; loose; very deep soil; water	table at 80 cm		
Geology/Parent Material				
Soil parent material:	unconsolidated material (unidentified) Juras	sic sandstone, Colluvium		
Geology:	sandstone			
Vegetation				
Туре:				
Site:				
Surrounds:				
Notes:	Pasture: Brome, Cape Weed, Blue lupins & a	assorted grasses & Silver	grass	
Land Use				
Site:	Cropping (may include grazing in rotation)			
Surrounds:	Cropping (may include grazing in rotation)			
Visible Erosion, Assessed Flood	ing and Salinity			
No wind erosion, no scald erosior	n, slight sheet erosion, no rill erosion, no gull	y erosion, no flooding, no	ponding, no salinity.	
Current Classification				
WA Soil Group:	Pale deep sand, (1999)			
Australian Soil Classification:	Basic Arenic Bleached-Orthic Tenosol (2002))		
Map Unit:	224Ye_3a			

Horizon	Depth (cm)	Description
Ар	0-20	greyish brown (10YR 5/2) moist, grey (10YR 6/1) dry medium sand; loose dry consistence; apedal, single grain structure; sandy fabric; many, very fine roots; no coarse fragments; rapid permeability; fine to medium sand. Many very fine (< 1 mm) grass roots; clear, smooth boundary.
A2	20-50	light brownish grey (10YR 6/2) moist, light grey (10YR 7/2) dry medium sand; loose dry consistence; apedal, single grain structure; sandy fabric; few, very fine roots; no coarse fragments; rapid permeability; fine to medium sand. Few very fine grass roots; diffuse, smooth boundary.
A3	50-110	yellow (10YR 8/6) moist, very pale brown (10YR 8/3) dry medium sand; loose dry consistence; apedal, single grain structure; sandy fabric; no, very fine roots; no coarse fragments; rapid permeability; Roots 1 per 100cm2; gradual, smooth boundary.
B1	110-150	yellow (10YR 8/6) moist, very pale brown (10YR 8/4) dry medium sand with 4-8% clay; moderately moist soil; apedal, massive structure; earthy fabric; no, very fine roots; 5% subrounded ironstone fine gravels, soft irregular nodules and subrounded ironstone medium gravels; moderately rapid permeability; Friable, nil roots. Old decayed carbonic root channels + 5 mm.
B2	150-170+	yellow (10YR 7/8) moist, very pale brown (10YR 8/4) dry clayey medium sand; very few mottles; moist soil; apedal, massive structure; earthy fabric; no, very fine roots; 5% subrounded ironstone fine gravels, variegated red and subrounded ironstone medium gravels; moderately rapid permeability; nil roots. Friable.

Project & Site Code: SC2 BAS2

Described by: Bill Verboom Date: 10/10/2000

Observation Type/Category:	soil pit, full description			
Lab Analyses:	Limited chemical and physical analyses			
Location:	MGA Zone: 50 357152 mE 6644285 mN			
Locations Notes:	Badgingarra, Tom Plant			
Site Notes:	Photo frame: 11-15			
Disturbance:	Complete clearing; past cultivation			
Landform				
Landform pattern:	pediment	Slope:	1 %	
Relief/modal slope:	undulating low hills			
Landform element:	hillslope	Slope length (m):	250	
Morphological type:	lower slope	Slope curvature:	concave slope	
Relief:	50 m	Pattern Relief:	pediment	
Surface and Hydrological Proper	ties			
Rock outcrop:	0 %			
Surface coarse fragments:	no coarse fragments gravels, no coarse fragments stones			
Physical properties:	loose; very deep soil; water table at 80 cm			
Geology/Parent Material				
Soil parent material:	unconsolidated material (unidentified) Jurassic sandstone, Colluvium			
Geology:	sandstone			
Vegetation				
Туре:				
Site:				
Surrounds:				
Notes:	Sparse pasture: Rye grass & clover with lup	ins & cape weed		
Land Use				
Site:	Cropping (may include grazing in rotation)			
Surrounds:	Cropping (may include grazing in rotation)			
Visible Erosion, Assessed Flood	ing and Salinity			
No wind erosion, no scald erosion	n, slight sheet erosion, no rill erosion, no gull	y erosion, no flooding, no	ponding, no salinity.	
Current Classification				
WA Soil Group:	Pale deep sand, (1999)			
Australian Soil Classification:	Basic Arenic Bleached-Orthic Tenosol (2002))		
Map Unit:	224Ye_3a			

Horizon	Depth (cm)	Description
Ар	0-20	greyish brown (10YR 5/2) moist, light brownish grey (10YR 6/2) dry sand; loose dry consistence; apedal, single grain structure; sandy fabric; common, very fine roots; no coarse fragments; rapid permeability, water repellent; very fine common grass roots. Occasional medium lateral roots from old native species; abrupt, wavy boundary.
A2	20-50	very pale brown (10YR 7/3) moist, white (10YR 8/2) dry sand; very weak dry consistence; apedal, single grain structure; sandy fabric; common, very fine roots; no coarse fragments; rapid permeability;Common fine grass roots plus occasional woody roots as above; diffuse, smooth boundary.
A3	50-110	yellow (10YR 7/5) moist, very pale brown (10YR 7/4) dry sand with 4-8% clay; very few mottles; weak moderately moist consistence; apedal, massive structure; sandy fabric; few, fine roots; no coarse fragments; moderately rapid permeability; few fine roots occasional medium roots as above; diffuse, smooth boundary.
B1	110-140	yellow (10YR 7/6) moist, yellow (10YR 7/5) dry clayey sand; weak moist consistence; apedal, massive structure; sandy fabric; few, fine roots; very few subrounded ironstone medium gravels; moderately rapid permeability; occasional fine roots. Few woody roots as above; diffuse, smooth boundary.
B2	140-160+	yellow (10YR 7/6) moist, yellow (10YR 7/5) dry clayey sand; few mottles; weak moist consistence; apedal, massive structure; sandy fabric; 2 % subrounded ironstone fine gravels and 1 % subrounded ironstone medium gravels; moderately rapid permeability; occasional fine roots. Woody roots as above.

Project & Site Code: SC2 BAU1

Described by: Bill Verboom Date: 10/10/2000

Observation Type/Category:	soil pit, full description		
Lab Analyses:	Limited chemical and physical analyses.		
Location:	MGA Zone: 50 357745 mE 6644312 mN		
Locations Notes:	Badgingarra, Tom Plant		
Site Notes:	Photo frame: 17-25. Burnt some time. 5 year	rs since fire	
Disturbance:	Natural		
Landform			
Landform pattern:	pediment	Slope:	1 %
Relief/modal slope:	undulating low hills		
Landform element:	hillslope	Slope length (m):	100
Morphological type:	lower slope	Slope curvature:	concave slope
Relief:	50 m	Pattern Relief:	pediment
Surface and Hydrological Proper	ties		
Rock outcrop:	0 %		
Surface coarse fragments:	no coarse fragments gravels, no coarse fragments, stones		
Physical properties:	loose; very deep soil; water table at 80 cm		
Geology/Parent Material			
Soil parent material:	unconsolidated material (unidentified) Juras	sic sandstone, Colluvium	
Geology:	sandstone		
Vegetation			
Туре:			
Site:			
Surrounds:	heathland		
Notes:	Low heath		
Land Use			
Site:	Not used		
Surrounds:	Cropping (may include grazing in rotation)		
Visible Erosion, Assessed Floodi	ng and Salinity		
No wind erosion, no scald erosior	n, no sheet erosion, no rill erosion, no gully e	rosion, no flooding, no po	nding, no salinity.
Current Classification			
WA Soil Group:	Pale deep sand, (1999)		
Australian Soil Classification:	Basic Arenic Bleached-Orthic Tenosol (2002))	
Map Unit:	224Ye_3a		

Horizon	Depth (cm)	Description
A1	0-10	dark greyish brown (10YR 4/2) moist, greyish brown (10YR 5/2) dry sand; loose dry consistence; apedal, single grain structure; no coarse fragments; rapid permeability, non water repellent; many very fine roots. Few fine roots. Occasional medium roots; clear, smooth boundary.
A2	10-30	very pale brown (10YR 7/3) moist, very pale brown (10YR 7/3) dry sand; loose dry consistence; apedal, single grain structure; no coarse fragments; rapid permeability; few very fine & fine roots. Occasional lateral medium roots; diffuse, smooth boundary.
A3	30-60	very pale brown (10YR 7/4) moist, very pale brown (10YR 7/4) dry sand with 2-4% clay; very weak, moderately moist consistence; apedal, single grain structure; no coarse fragments; moderately rapid permeability; few very fine & fine and occasional medium roots; diffuse, smooth boundary.
B1	60-90	yellow (10YR 7/6) moist, yellow (10YR 7/5) dry sand with 4-8% clay; common mottles; very weak moist consistence; apedal, massive structure; no coarse fragments; moderately rapid permeability; few very fine & fine and occasional medium roots; diffuse, smooth boundary.
B2	90-120	yellow (10YR 7/6) moist, yellow (10YR 7/6) dry clayey sand; many mottles; very weak moist consistence; apedal, massive structure; no coarse fragments; moderately rapid permeability; few very fine & fine and occasional medium roots; diffuse, wavy boundary.
B3	120-150+	yellow (10YR 7/6) moist, yellow (10YR 7/6) dry clayey sand; many mottles; very weak moist consistence; apedal, massive structure; no coarse fragments; moderately rapid permeability; few very fine & fine and occasional medium roots.

Project & Site Code: SC2 BRL2

Described by: Ted (E.A.) Griffin Date: 15/02/2001

Observation Type/Category:	soil pit, full description			
Lab Analyses:	Detailed chemical and physical analyses			
Location:	MGA Zone: 50 490424 mE 6429025 mN			
Locations Notes:	NW of Brookton			
Site Notes:	MicroRelief: Plough furrows			
Disturbance:	Cultivation, rainfed			
Landform				
Landform pattern:	rises	Slope:	3 %	
Relief/modal slope:	undulating rises			
Landform element:	hillslope	Slope length (m):	500	
Morphological type:	mid-slope	Slope curvature:	uniform slope	
Relief:	50 m	Pattern Relief:	rises	
Surface and Hydrological Proper	ties			
Rock outcrop:	0 %			
Surface coarse fragments:	no coarse fragments gravels, no coarse fragments stones			
Physical properties:	Water repellent; loose; moderately deep soil			
Geology/Parent Material				
Soil parent material:	strongly weathered, unconsolidated material (unidentified) Colluvium			
Geology:				
Vegetation				
Туре:				
Site:				
Surrounds:	low heath			
Notes:				
Land Use				
Site:	Cropping (may include grazing in rotation)			
Surrounds:	Cropping (may include grazing in rotation)			
Visible Erosion, Assessed Flood	ing and Salinity			
Slight wind erosion, no scald eros	sion, no sheet erosion, no rill erosion, no gull	y erosion, no flooding, no	ponding, no salinity.	
Current Classification				
WA Soil Group:	Reticulite deep sandy duplex, gravelly (1999)		
Australian Soil Classification:	Acidic Ferric-Petroferric Bleached-Orthic Ter	iosol (2002)		

Horizon	Depth (cm)	Description
Ар	0-10	dark greyish brown (10YR 4/2) moist sand with 2-4 % clay; firm consistence; apedal, single grain structure; common, very fine roots; no coarse fragments; moderately rapid permeability; roots few, fine; clear, smooth boundary.
A2	10-40	pale brown (10YR 6/3) moist, white (10YR 8/0) dry sand; very weak consistence; apedal, single grain structure; few, very fine roots; no coarse fragments; moderately rapid permeability; roots few, fine; clear, wavy boundary.
B1	40-50	pale brown (10YR 6/3) moist sand with 2-4 % clay; very weak consistence; apedal, single grain structure; few, very fine roots; 20 % subrounded ferruginous fine gravels and 40 % subrounded ferruginous medium gravels; moderately rapid permeability; gradual, tongued boundary.
B2	50-90+	brownish yellow (10YR 6/8) moist; rigid consistence; apedal, massive structure; few, very fine roots; 10% subrounded ferruginous medium gravels; moderate permeability; Breaking up reticulite. As per site BRU2. Roots size 1, fine.

Project & Site Code: SC2 BRU2

Observation Type/Category:	soil pit, full description		
Lab Analyses:	Detailed chemical and physical analyses		
Location:	MGA Zone: 50 490379 mE 6429160 mN		
Locations Notes:	NW of Brookton		
Site Notes:	Once grazed. Fenced off 15 years ago		
Disturbance:	No effective disturbance, grazed		
Landform			
Landform pattern:	rises	Slope:	3 %
Relief/modal slope:	undulating rises		
Landform element:	hillslope	Slope length (m):	500
Morphological type:	mid-slope	Slope curvature:	uniform slope
Relief:	50 m	Pattern Relief:	rises
Surface and Hydrological Proper	lies		
Rock outcrop:	0 %		
Surface coarse fragments:	no coarse fragments gravels, no coarse fragments stones, no coarse fragments		
Physical properties:	loose; moderately deep soil		
Geology/Parent Material			
Soil parent material:	strongly weathered, unconsolidated material	(unidentified) Colluvium	
Geology:	granite		
Vegetation			
Туре:			
Site:			
Surrounds:			
Notes:			
Land Use			
Site:	Not used		
Surrounds:	Not used		
Visible Erosion, Assessed Floodi	ng and Salinity		
No wind erosion, no scald erosion	n, no sheet erosion, no rill erosion, no gully e	rosion, no flooding, no po	nding, no salinity.
Current Classification			
WA Soil Group:	Reticulite deep sandy duplex, gravelly (1999)	

Australian Soil Classification: Acidic Ferric-Petroferric Bleached-Orthic Tenosol (2002)

Horizon	Depth (cm)	Description
Ар	0-10	dark grey (10YR 4/1) moist medium sand with 2-4% clay; weak dry consistence; apedal, single grain structure; many, very fine roots; no coarse fragments; moderately rapid permeability; sand M to F. Surface sand was L on top of well developed surface seal. Roots size F - F & size M - F; diffuse, smooth boundary.
A2	10-30	pale brown (10YR 6/3) moist, white (10YR 8/0) dry sand; very weak dry consistence; apedal, single grain structure; common, very fine roots; no coarse fragments; moderately rapid permeability; Roots size F - F & size M - F; gradual, smooth boundary.
B1	30-60	pale brown (10YR 6/3) moist medium sand with 2-4 % clay; very weak dry consistence; apedal, single grain structure; common, very fine roots; 20% fine gravels and 30 % medium gravels Alluvial and 20 % coarse gravels; moderately rapid permeability; sand M to F. Boundary sometimes tongued. Roots size F - F & size M rare; gradual, wavy boundary.
B2	60-85+	rigid dry consistence; apedal, massive structure; few, very fine roots; no coarse fragments; moderate permeability; reticulite breaking up. Ferricrinds with pale smooth goethite cotes. Also roots size F - F & size M rare. Massive reticulite.

Project & Site Code: SC2 COL1

Described by: Bill Verboom Date: 22/02/2001

Observation Type/Category:	soil pit, full description			
Lab Analyses:	Detailed chemical and physical analyses			
Location:	MGA Zone: 51 481020 mE 6276953 mN			
Locations Notes:	Condingup			
Site Notes:				
Disturbance:	Cultivation, rainfed			
Landform				
Landform pattern:	rises	Slope:	1 %	
Relief/modal slope:	gently undulating rises			
Landform element:	hillslope	Slope length (m):	100	
Morphological type:	mid-slope	Slope curvature:	concave slope	
Relief:	30 m	Pattern Relief:	rises	
Surface and Hydrological Proper	ties			
Rock outcrop:	0 %			
Surface coarse fragments:	no coarse fragments gravels, no coarse fragments stones			
Physical properties:	loose; very deep soil			
Geology/Parent Material				
Soil parent material:	strongly weathered, unconsolidated material (unidentified) Colluvium			
Geology:	sandstone			
Vegetation				
Type:				
Site:				
Surrounds:				
Notes:				
Land Use				
Site:	Cropping (may include grazing in rotation)			
Surrounds:	Cropping (may include grazing in rotation)			
Visible Erosion, Assessed Flood	ing and Salinity			
Moderate wind erosion, no scald	erosion, no sheet erosion, no rill erosion, no	gully erosion, no ponding,	no salinity.	
Current Classification				
WA Soil Group:	Yellow/brown deep sandy duplex, gravelly (1	1999)		
Australian Soil Classification:	Ferric Eutrophic Yellow Chromosol (2002)			
Map Unit:	245Es_2			

Horizon	Depth (cm)	Description
Ар	0-10	dark grey (10YR 4/1) moist fine sand; weak moderately moist consistence; apedal, single grain structure; sandy fabric; no coarse fragments; moderately rapid permeability; gradual boundary.
A2	10-20	very pale brown (10YR 7/4) moist fine sand; weak moist consistence; apedal, single grain structure; sandy fabric; no coarse fragments; moderately rapid permeability; clear boundary.
A3	20-40	very pale brown (10YR 7/4) moist fine sand; weak moist consistence; apedal, single grain structure; sandy fabric; 55 % subangular ferruginous medium gravels concentrated towards lower boundary; moderately rapid permeability; clear boundary.
B2	40-70	brownish yellow (10YR 6/8) moist light clay; many coarse prominent yellowish red (5YR 5/8) moist mottles; very firm moist consistence; pedal, strong, angular blocky structure; 5 % subrounded ferruginous medium gravels; moderate permeability; diffuse boundary.
С	70-130+	light grey (10YR 7/2) moist light clay; common coarse prominent yellow (10YR 7/5) moist mottles; very firm moist consistence; pedal, strong, angular blocky structure; 1 % ferruginous; moderate permeability.

Project & Site Code: SC2 COS1

Described by: Bill Verboom Date: 22/02/2001

Observation Type/Category:	soil pit, full description		
Lab Analyses:	Detailed chemical and physical analyses		
Location:	MGA Zone: 51 481233 mE 6276873 mN		
Locations Notes:	Condingup		
Site Notes:			
Disturbance:	Cultivation, rainfed.		
Landform			
Landform pattern:	rises	Slope:	1 %
Relief/modal slope:	gently undulating rises		
Landform element:	hillslope	Slope length (m):	1000
Morphological type:	mid-slope	Slope curvature:	convex slope
Relief:	30 m	Pattern Relief:	rises
Surface and Hydrological Proper	ties		
Rock outcrop:	0 %		
Surface coarse fragments:	no coarse fragments gravels, no coarse frag	ments stones	
Physical properties:			
Geology/Parent Material			
Soil parent material:	strongly weathered, unconsolidated material	(unidentified) Colluvium	
Geology:	sandstone		
Vegetation			
Туре:			
Site:			
Surrounds:			
Notes:			
Land Use			
Site:	Cropping (may include grazing in rotation)		
Surrounds:	Cropping (may include grazing in rotation)		
Visible Erosion, Assessed Flood	ing and Salinity		
Current Classification			
WA Soil Group:	Yellow/brown deep sandy duplex, gravelly (1999)	
Australian Soil Classification:	Ferric Eutrophic Yellow Chromosol (2002)	7	
Map Unit:	245Es_2		

Horizon	Depth (cm)	Description
Ар	0-10	dark grey (10YR 4/1) moist fine sand; weak moderately moist consistence; apedal, single grain structure; sandy fabric; no coarse fragments; moderately rapid permeability; gradual boundary.
A21	10-20	very pale brown (10YR 7/4) moist fine sand; weak moderately moist consistence; apedal, single grain structure; sandy fabric; no coarse fragments; moderately rapid permeability; diffuse boundary.
A22	20-40	light yellowish brown (10YR 6/4) moist fine sand; weak moderately moist consistence; apedal, single grain structure; sandy fabric; no coarse fragments; moderately rapid permeability; clear boundary.
A3	40-60	light yellowish brown (10YR 6/4) moist fine sand; weak moderately moist consistence; apedal, single grain structure; sandy fabric; 40% subrounded ferruginous medium gravels dense gravels; moderately rapid permeability; clear boundary.
B2	60-100+	light grey (10YR 7/2) moist light clay; many coarse distinct strong brown (7.5YR 5/8) moist mottles; very firm moderately moist consistence; pedal, strong, angular blocky structure; no coarse fragments; moderately slow permeability.

Project & Site Code: SC2 COU1

Described by: Bill Verboom Date: 22/02/2001

Observation Type/Category:	soil pit, full description		
Lab Analyses:	Detailed chemical and physical analyses		
Location:	MGA Zone: 51 481208 mE 6276764 mN		
Locations Notes:	Condingup		
Site Notes:			
Disturbance:	Natural		
Landform			
Landform pattern:	rises	Slope:	1 %
Relief/modal slope:	gently undulating rises		
Landform element:	hillslope	Slope length (m):	500
Morphological type:	mid-slope	Slope curvature:	convex slope
Relief:	30 m	Pattern Relief:	rises
Surface and Hydrological Proper	ties		
Rock outcrop:	0 %		
Surface coarse fragments:	no coarse fragments gravels, no coarse frag	ments stones	
Physical properties:	loose; very deep soil		
Geology/Parent Material			
Soil parent material:	strongly weathered, unconsolidated material	(unidentified) Colluvium	
Geology:	sandstone		
Vegetation			
Туре:			
Site:	shrubland		
Surrounds:			
Notes:			
Land Use			
Site:	Not used		
Surrounds:	Not used		
Visible Erosion, Assessed Floodi	ng and Salinity		
No wind erosion, no scald erosior	n, slight sheet erosion, no rill erosion, no gull	y erosion, no flooding, no	ponding, no salinity.
Current Classification			
WA Soil Group:	Yellow/brown deep sandy duplex, gravelly (1	1999)	
Australian Soil Classification:	Ferric Eutrophic Yellow Chromosol (2002)		
Map Unit:	245Es_2		

Horizon	Depth (cm)	Description
A1	0-10	dark greyish brown (10YR 4/2) moist fine sand; weak moderately moist consistence; apedal, single grain structure; sandy fabric; no coarse fragments; moderately rapid permeability; clear, smooth boundary.
A21	10-20	pale brown (10YR 6/3) moist fine sand; weak moderately moist consistence; apedal, single grain structure; sandy fabric; no coarse fragments; moderately rapid permeability; diffuse, smooth boundary.
A22	20-30	light yellowish brown (10YR 6/4) moist fine sand; weak moderately moist consistence; apedal, single grain structure; sandy fabric; no coarse fragments; moderately rapid permeability; diffuse, smooth boundary.
A23	30-55	brownish yellow (10YR 6/6) moist fine sand; weak moderately moist consistence; apedal, single grain structure; sandy fabric; no coarse fragments; moderately rapid permeability; clear, wavy boundary.
A3	55-65	brownish yellow (10YR 6/6) moist fine sand; weak moderately moist consistence; apedal, single grain structure; sandy fabric; 50% subrounded ferruginous medium gravels; moderately rapid permeability; abrupt, smooth boundary.
B2	65-95+	light grey (10YR 7/2) moist light clay; common coarse distinct strong brown (7.5YR 5/8) moist mottles; very firm moderately moist consistence; pedal, strong, angular blocky structure; no coarse fragments; moderately slow permeability.

Project & Site Code: SC2 MEL3

Observation Type/Category:	soil pit, full description		
Lab Analyses:	Detailed chemical and physical analyses		
Location:	MGA Zone: 50 674149 mE 6506171 mN		
Locations Notes:	Bodallin South, Phil Ivey		
Site Notes:	Photo frame: 27 - 32. MICRORELIEF: Cultiva elsewhere occurs as pockets between grave	ation lines. Sheet of deep y I ridges. See card-Site Not	yellow colluvial soil at site es
Disturbance:	Cultivation, rainfed		
Landform			
Landform pattern:	rises	Slope:	3 %
Relief/modal slope:	gently undulating rises		
Landform element:	hillslope	Slope length (m):	800
Morphological type:	mid-slope	Slope curvature:	concave slope
Relief:	25 m	Pattern Relief:	rises
Surface and Hydrological Proper	ties		
Rock outcrop:	0 %		
Surface coarse fragments:	no coarse fragments gravels, no coarse frag	ments stones	
Physical properties:	Hardsetting; very deep soil		
Geology/Parent Material			
Soil parent material:	strongly weathered, unconsolidated material	(unidentified) Colluvium	
Geology:	granite		
Vegetation			
Туре:	grassland		
Site:			
Surrounds:	grassland		
Notes:	Cape weed, Sub-clover, Serradella. Cropped since the 70s or earlier		
Land Use			
Site:	Cropping (may include grazing in rotation)		
Surrounds:	Cropping (may include grazing in rotation)		
Visible Erosion, Assessed Floodi	ng and Salinity		
slight wind erosion, slight sheet e	rosion, no rill erosion, no gully erosion, no fl	ooding, no ponding, no sa	linity.
Current Classification			
WA Soil Group:	Acid yellow sandy earth (1999)		
Australian Soil Classification:	Acidic Mesotrophic Yellow Kandosol (2002)		
Map Unit:	258Ta		

Horizon	Depth (cm)	Description
A1	0-10	pale brown (10YR 6/3) moist, light brownish grey (10YR 6/2) dry sand with 4-8% clay; very firm dry consistence; apedal; common, very fine roots; no coarse fragments; moderately rapid permeability, non water repellent; clear boundary.
A2	10-30	brownish yellow (10YR 6/6) moist, yellow (10YR 7/6) dry clayey sand; very firm moderately moist consistence; apedal, massive structure; earthy fabric; few, very fine roots; no coarse fragments; moderately rapid permeability; diffuse boundary.
B1	30-80	brownish yellow (10YR 6/8) moist, yellow (10YR 7/6) dry sandy loam; few coarse mottles and very few coarse mottles; weak moist consistence; apedal, massive structure; earthy fabric; few, very fine roots; no coarse fragments; moderately rapid permeability; diffuse boundary.
B2	80-150+	brownish yellow (10YR 6/8) moist, yellow (10YR 7/6) dry sandy loam; few coarse mottles; weak moist consistence; apedal, massive structure; earthy fabric; very fine roots; no coarse fragments; moderately rapid permeability; rare very fine roots.

Project & Site Code: SC2 MES1

Described by: Ted (E.A.) Griffin Date: 19/10/2000

e			
Ubservation Type/Category:	soil pit, full description		
Lab Analyses:	Detailed chemical and physical analyses		
Location:	MGA Zone: 50 674056 mE 6506032 mN		
Locations Notes:	Bodallin South, Phil Ivey		
Site Notes:	frame: 7 - 14. MICRORELIEF: Cultivation		
Disturbance:	Cultivation, rainfed		
Landform			
Landform pattern:	rises	Slope:	2 %
Relief/modal slope:	gently undulating rises		
Landform element:	hillslope	Slope length (m):	500
Morphological type:	mid-slope	Slope curvature:	uniform slope
Relief:	25 m	Pattern Relief:	rises
Surface and Hydrological Proper	ties		
Rock outcrop:	0 %		
Surface coarse fragments:	no coarse fragments gravels, no coarse frag	ments stones	
Physical properties:	firm; very deep soil; water table at 80 cm		
Geology/Parent Material			
Soil parent material:	strongly weathered, unconsolidated material	l (unidentified) Colluvium	
Geology:	granite		
Vegetation			
Type:			
Site:			
Surrounds:	combination (shrub, mallee, woodland)		
Notes:	Cape weed, Sub-clover. Cleared in 1990		
Land Use			
Site:	Grazing (grazing of vegetation planted by ma	an)	
Surrounds:	Cropping (may include grazing in rotation)		
Visible Erosion, Assessed Floodi	ng and Salinity		
Slight wind erosion, no scald eros	sion, slight sheet erosion, no rill erosion, no g	gully erosion, no flooding,	no ponding, no salinity.
Current Classification			
WA Soil Group:	Acid yellow sandy earth (1999)		
Australian Soil Classification:	Acidic Mesotrophic Yellow Kandosol (2002)		
Map Unit:	258Ta		

Horizon	Depth (cm)	Description
A1	0-10	yellowish brown (10YR 5/4) moist, light yellowish brown (10YR 6/4) dry clayey sand; weak consistence; apedal, single grain structure; no coarse fragments; moderately rapid permeability;(LS); clear boundary.
A2	10-30	brownish yellow (10YR 6/6) moist, yellow (10YR 7/6) dry medium sandy loam; firm consistence; apedal, massive structure; no coarse fragments; moderately rapid permeability; cultivation pan at top of this layer; diffuse boundary.
B1	30-50	brownish yellow (10YR 6/5) moist medium sandy loam; few red (2.5YR 4/6) moist mottles; weak consistence, slightly sticky, slightly plastic; apedal, massive structure; very few ferruginous semi-indurated, irregular; no coarse fragments; moderately rapid permeability; diffuse boundary.
B2	50-140+	brownish yellow (10YR 6/8) moist medium sandy loam; apedal, massive structure; earthy fabric; no coarse fragments; moderately rapid permeability;moist consistence.

Project & Site Code: SC2 MEU1

Observation Type/Category:	soil pit, full description		
Lab Analyses:	Detailed chemical and physical analyses		
Location:	MGA Zone: 50 674101 mE 6506136 mN		
Locations Notes:	Bodallin South, Phil Ivey		
Site Notes:	MICRORELIEF: Pedestals under vegetation. 3 access by stock obvious. Surface crust about 1-2 mm often with lichen & moss.	Sand plain. Strip of vegeta It 10mm. Some layers wit	tion 25 m. wide, some slight hin crust including surface
Disturbance:	Slightly disturbed		
Landform			
Landform pattern:	rises	Slope:	2 %
Relief/modal slope:	gently undulating rises		
Landform element:	hillslope	Slope length (m):	500
Morphological type:	mid-slope	Slope curvature:	uniform slope
Relief:	25 m	Pattern Relief:	rises
Surface and Hydrological Proper	ties		
Rock outcrop:	0 %		
Surface coarse fragments:	no coarse fragments gravels, no coarse frag	ments stones	
Physical properties:	surface crust; very deep soil		
Geology/Parent Material			
Soil parent material:	strongly weathered, unconsolidated material	(unidentified) Colluvium	
Geology:	granite		
Vegetation			
Type:			
Site:	shrubland		
Surrounds:	mallee		
Notes:	Heath. Appears to have been burnt about 19	90	
Land Use			
Site:	Not used		
Surrounds:	Cropping (may include grazing in rotation)		
Visible Erosion, Assessed Floodi	ng and Salinity		
No wind erosion, no scald erosior	n, no sheet erosion, no rill erosion, no gully e	rosion, no flooding, no po	nding, no salinity.
Current Classification			
WA Soil Group:	Acid yellow sandy earth, (1999)		
Australian Soil Classification:	Acidic Mesotrophic Yellow Kandosol (2002)		
Map Unit:	258Ta		

Horizon	Depth (cm)	Description
A11	0-2	brown (10YR 5/3) moist fine sand; very firm dry consistence; pedal, moderate, 2-5 mm, platy structure; no coarse fragments; moderately slow permeability, non water repellent;texture FM CS; abrupt boundary.
A12	2-10	brownish yellow (10YR 6/6) moist fine sand; loose dry consistence; apedal, single grain structure; no coarse fragments; moderately rapid permeability; texture FK CS; gradual boundary.
A2	10-30	yellow (10YR 7/6) moist clayey sand; few mottles; loose dry consistence; apedal, single grain structure; no coarse fragments; moderately rapid permeability; gradual boundary.
B1	30-80	brownish yellow (10YR 6/8) moist sandy loam; few mottles; very weak dry consistence; apedal, massive structure; ferruginous; 1 % rounded quartz fine gravels; moderately rapid permeability; semi-indurated FE mottles, irregular, infilled root channels; diffuse boundary.
B2	80-150+	brownish yellow (10YR 6/8) moist sandy loam; weak moderately moist consistence; apedal, massive structure; medium ferruginous and fine ferruginous; 2 % subrounded quartz fine gravels; moderately rapid permeability;semi-indurated FE mottles, irregular, infilled root channels.

Project & Site Code: SC2 MUL3

Described by: Ted (E.A.) Griffin Date: 26/10/2000

Observation Type/Category:	soil pit, full description		
Lab Analyses:	Detailed chemical and physical analyses		
Location:	MGA Zone: 50 389969 mE 6827030 mN		
Locations Notes:	Tardan, Christian Brother's College		
Site Notes:	MICRORELIEF: Vehicle tracks		
Disturbance:	Cultivation, rainfed		
Landform			
Landform pattern:	rises	Slope:	< 1 %
Relief/modal slope:	gently undulating rises		
Landform element:	hillslope	Slope length (m):	2000
Morphological type:	mid-slope	Slope curvature:	uniform slope
Relief:	20 m	Pattern Relief:	rises
Surface and Hydrological Proper	ties		
Rock outcrop:	0 %		
Surface coarse fragments:	no coarse fragments gravels, no coarse frag	ments stones	
Physical properties:	loose; deep soil		
Geology/Parent Material			
Soil parent material:	strongly weathered, unconsolidated material	(unidentified) Colluvium/I	ateritic
Geology:	granite		
Vegetation			
Type:			
Site:			
Surrounds:			
Notes:	Cape weed, Sub - clover & grasses		
Land Use			
Site:	Cropping (may include grazing in rotation)		
Surrounds:	Cropping (may include grazing in rotation)		
Visible Erosion, Assessed Floodi	ng and Salinity		
Slight wind erosion, no scald eros	sion, no sheet erosion, no rill erosion, no gull	y erosion, no flooding, no	ponding, no salinity.
Current Classification			
WA Soil Group:	Yellow deep sand, acid, gravelly (1999)		
Australian Soil Classification:	Acidic Ferric-Reticulate Yellow-Orthic Tenoso	ol (2002)	
Map Unit:	271Pi_2		

Horizon	Depth (cm)	Description
Ар	0-12	brown (7.5YR 4/4) moist, light yellowish brown (10YR 6/4) dry sand with 4-8 % clay; very weak consistence; apedal, massive structure; 1 % rounded ironstone fine gravels no goethite coatings; moderately rapid permeability; clear, wavy boundary.
A2	12-45	brownish yellow (10YR 6/6) moist, yellow (10YR 7/6) dry clayey sand; weak consistence; apedal, massive structure; 1% rounded ironstone fine gravels no goethite coatings; moderately rapid permeability; gradual boundary.
B1	45-80	strong brown (7.5YR 5/6) moist clayey sand; firm consistence; apedal, massive structure; 20 % subrounded ironstone fine gravels goethite, haematite interior and 10 % subrounded ironstone medium gravels goethite, haematite interior and 40 % subrounded ironstone coarse gravels goethite, haematite interior; moderately rapid permeability; gradual boundary.
B2	80-150+	brownish yellow (10YR 6/6) moist sandy loam; very firm consistence; apedal, massive structure: 80% subangular ironstone Manganese in reticulite, highly Fe, black interior.

Project & Site Code: SC2 MUS1

Described by: Bill Verboom Date: 26/10/2000

Observation Type/Category:	soil pit, full description			
Lab Analyses:	Detailed chemical and physical analyses			
Location:	MGA Zone: 50 391259 mE 6829101 mN			
Locations Notes:	Tardan, Christian Brother's College			
Site Notes:	MICRORELIEF: Vehicle tracks. Frame No.3 F	rom 35 - 37		
Disturbance:	Cultivation, rainfed			
Landform				
Landform pattern:	plain	Slope:	< 1 %	
Relief/modal slope:	undulating plains			
Landform element:	hillslope	Slope length (m):	300	
Morphological type:	mid-slope	Slope curvature:	uniform slope	
Relief:	20 m	Pattern Relief:	plain	
Surface and Hydrological Proper	ties			
Rock outcrop:	0 %			
Surface coarse fragments:	no coarse fragments gravels, no coarse fragments stones			
Physical properties:	loose; deep soil			
Geology/Parent Material				
Soil parent material:	strongly weathered, unconsolidated material (unidentified) Colluvium			
Geology:	granite			
Vegetation				
Туре:				
Site:				
Surrounds:				
Notes:	Cape weed, raddish, some grass & clover			
Land Use				
Site:	Cropping (may include grazing in rotation)			
Surrounds:	Not used			
Visible Erosion, Assessed Flooding and Salinity				
Slight wind erosion, no scald eros	sion, no sheet erosion, no rill erosion, no gull	y erosion, no flooding, no	ponding, no salinity.	
Current Classification				
WA Soil Group:	Yellow deep sand, acid, gravelly (1999)			
Australian Soil Classification:	Acidic Ferric-Reticulate Yellow-Orthic Tenosol (2002)			
Map Unit:	271Pi_2			

Horizon	Depth (cm)	Description
Ар	0-10	strong brown (7.5YR 5/6) moist, brownish yellow (10YR 6/6) dry sand; very weak dry consistence; apedal, single grain structure; very few rounded ironstone fine gravels; moderately rapid permeability; many very fine roots; clear boundary.
A2	10-80	yellowish brown (10YR 5/6) moist sand; weak moderately moist consistence; apedal, massive structure; very few rounded ironstone fine gravels; moderately rapid permeability; few very fine roots; diffuse boundary.
B1	80-100	brownish yellow (10YR 6/6) moist clayey sand; firm moist consistence; apedal, massive structure; 30 % rounded fine gravels and 45 % rounded medium gravels; moderately rapid permeability; few very fine roots; clear boundary.
B2	100-120+	light grey (10YR 7/2) moist sandy loam; common brownish yellow (10YR 6/6) moist mottles; very firm moist consistence; apedal, massive structure; 40 % subangular ironstone fine gravels reticulite and 40% subangular ironstone medium gravels; moderate permeability; 4 - 5 Consistence. Occasional very fine roots.

Project & Site Code: SC2 MUU3

Described by: Ted (E.A.) Griffin Date: 26/10/2000

Observation Type/Category:	soil pit, full description			
Lab Analyses:	Limited chemical and physical analyses			
Location:	MGA Zone: 50 391259 mE 6829051 mN			
Locations Notes:	Tardan, Christian Brother's College			
Site Notes:	MICRORELIEF: Pedestals around plants			
Disturbance:	Natural			
Landform				
Landform pattern:	plain	Slope:	< 1 %	
Relief/modal slope:	undulating plains			
Landform element:	hillslope	Slope length (m):		
Morphological type:	mid-slope	Slope curvature:	uniform slope	
Relief:	20 m	Pattern Relief:	plain	
Surface and Hydrological Proper	ties			
Rock outcrop:	0 %			
Surface coarse fragments:	no coarse fragments gravels, no coarse fragments stones			
Physical properties:	surface crust; deep soil			
Geology/Parent Material				
Soil parent material:	strongly weathered, unconsolidated material (unidentified) Colluvium			
Geology:	granite			
Vegetation				
Туре:				
Site:	heathland			
Surrounds:				
Notes:				
Land Use				
Site:	Not used			
Surrounds:	Cropping (may include grazing in rotation)			
Visible Erosion, Assessed Floodi	ng and Salinity			
No wind erosion, no scald erosior	n, no sheet erosion, no rill erosion, no gully e	rosion, no flooding, no po	nding, no salinity.	
Current Classification				
WA Soil Group:	Yellow deep sand, acid, gravelly (1999)			
Australian Soil Classification:	Acidic Ferric-Reticulate Yellow-Orthic Tenosol (2002)			
Map Unit:	271Pi_2			

Horizon	Depth (cm)	Description
A1	0-5	brown (7.5YR 4/4) moist, light yellowish brown (10YR 6/4) dry sand with 4-8 % clay; weak dry consistence; apedal, single grain structure; no coarse fragments; moderately rapid permeability; texture: fine to medium, top 0.5 cm biological surface crust.; gradual boundary.
A21	5-30	yellowish brown (10YR 5/6) moist, very pale brown (10YR 7/4) dry sand with 4-8 % clay; very weak dry consistence; apedal, single grain structure; no coarse fragments; moderately rapid permeability; texture: fine to medium.
A22	30-85	yellowish brown (10YR 5/8) moist, brownish yellow (10YR 6/6) dry sand with 4-8 % clay; very weak dry consistence; apedal, massive structure; very few ironstone; moderately rapid permeability; texture: fine to medium.
B1	85-95	yellowish brown (10YR 5/8) moist, brownish yellow (10YR 6/6) dry sand with 4-8 % clay; very weak dry consistence; apedal, massive structure; 30 % rounded ironstone fine gravels goethite coated and 20 % rounded ironstone medium gravels goethite coated; moderately rapid permeability; texture: fine to medium.
B2	95-100+	brownish yellow (10YR 6/8), very pale brown (10YR 7/4) moist clayey sand; very firm moderately moist consistence; apedal, massive structure; 60 % subrounded ironstone medium gravels multi-coloured, goethite & haematite; moderate permeability; perm. fact.: 3 - 4 variable.

Project & Site Code: SC2 NDL2

Described by: Noel Schoknecht Date: 21/10/2000

Observation Type/Category:	soil pit, full description			
Lab Analyses:	Limited chemical and physical analyses			
Location:	MGA Zone: 50 684796 mE 6302488 mN			
Locations Notes:	South Newdegate, Barry and Anne Rick			
Site Notes:				
Disturbance:	Complete clearing; past cultivation			
Landform				
Landform pattern:	rises	Slope:	2 %	
Relief/modal slope:	gently undulating rises			
Landform element:	hillslope	Slope length (m):	500	
Morphological type:	mid-slope	Slope curvature:	uniform slope	
Relief:	20 m	Pattern Relief:	rises	
Surface and Hydrological Proper	ties			
Rock outcrop:	0 %			
Surface coarse fragments:	no coarse fragments gravels, no coarse fragments stones			
Physical properties:	Water repellent; loose; deep soil			
Geology/Parent Material				
Soil parent material:	strongly weathered, unconsolidated material (unidentified) Colluvium			
Geology:	granite			
Vegetation				
Type:				
Site:				
Surrounds:				
Notes:	dried off pasture, none recognisable, cereal stubble from previous year			
Land Use				
Site:	Grazing (grazing of vegetation planted by man)			
Surrounds:	Cropping (may include grazing in rotation)			
Visible Erosion, Assessed Flood	ing and Salinity			
Moderate wind erosion, no scald	erosion, no sheet erosion, no rill erosion, no	gully erosion, no flooding,	no ponding, no salinity.	
Current Classification				
WA Soil Group:	Duplex sandy gravel, (1999)			
Australian Soil Classification:	Ferric Mottled-Subnatric Yellow Sodosol (2002)			
Map Unit:	250Nw_5			
Horizon	Depth (cm)	Description		
---------	------------	---		
A1	0-10	dark grey (10YR 4/1) moist, grey (10YR 6/1) dry sand; very weak dry consistence; apedal, single grain structure; 1 % rounded ironstone fine gravels; rapid permeability; dry due to plough layer; sharp, smooth boundary.		
A21	10-12	pale brown (10YR 6/3) moist, light grey (10YR 7/2) dry sand; weak dry consistence; apedal, single grain structure; 5 % rounded ironstone fine gravels and 2 % subrounded ironstone medium gravels; rapid permeability; abrupt, smooth boundary.		
A22	12-42	pale brown (10YR 6/3) moist, very pale brown (10YR 7/3) dry sand; very weak dry consistence; apedal, single grain structure; 25 % subrounded ironstone fine gravels and 30 % subrounded ironstone medium gravels and 5 % subrounded ironstone coarse gravels; rapid permeability; abrupt, wavy boundary.		
B21	42-50	pale brown (10YR 6/3) moist sandy clay; common medium distinct yellowish red (5YR 5/8) moist mottles; strong dry consistence; apedal, massive structure; 5 % subrounded ironstone medium gravels; moderately slow permeability; gradual, wavy boundary.		
B22	50-70	pale brown (10YR 6/3) moist medium clay; many medium prominent yellowish red (5YR 5/8) moist mottles; very firm moderately moist consistence; pedal, weak, 10-20 mm, subangular blocky structure; 2% subrounded ironstone medium gravels; moderate permeability;Reticulate pattern; diffuse, wavy boundary.		
B23	70-110+	light yellowish brown (10YR 6/4) moist medium clay; many medium distinct light grey (10YR 7/2) moist mottles; firm moderately moist consistence; pedal, weak, 5-10 mm, angular blocky structure; 5% subrounded ironstone medium gravels; moderate permeability.		

Project & Site Code: SC2 NDS4

Observation Type/Category:	soil pit, full description		
Lab Analyses:	Limited chemical and physical analyses		
Location:	MGA Zone: 50 683571 mE 6301325 mN		
Locations Notes:	South Newdegate, Barry and Anne Rick		
Site Notes:	MICRORELIEF: Plough furrows. Some roots	on surface	
Disturbance:	Complete clearing; past cultivation		
Landform			
Landform pattern:	rises	Slope:	1 %
Relief/modal slope:	gently undulating rises		
Landform element:	hillslope	Slope length (m):	500
Morphological type:	mid-slope	Slope curvature:	uniform slope
Relief:	20 m	Pattern Relief:	rises
Surface and Hydrological Proper	ties		
Rock outcrop:	0 %		
Surface coarse fragments:	no coarse fragments gravels, no coarse frag	ments stones	
Physical properties:	soft; moderately deep soil		
Geology/Parent Material			
Soil parent material:	strongly weathered, unconsolidated material	(unidentified)	
Geology:	granite		
Vegetation			
Type:			
Site:			
Surrounds:			
Notes:	Pasture, crop last year. Sub-clover, raddish,	Vulpia. Lot of stubble last	year
Land Use			
Site:	Grazing (grazing of vegetation planted by ma	an)	
Surrounds:	Not used		
Visible Erosion, Assessed Floodi	ng and Salinity		
No wind erosion, no scald erosior	n, no sheet erosion, no rill erosion, no gully e	rosion, no flooding, no po	nding, no salinity.
Current Classification			
WA Soil Group:	Grey deep sandy duplex, gravelly (1999)		
Australian Soil Classification:	Ferric Mottled-Subnatric Yellow Sodosol (20	02)	
Map Unit:	250Nw_5		

	B 11 ()	
Horizon	Depth (cm)	Description
A1	0-5	dark greyish brown (10YR 4/2) moist, light brownish grey (10YR 6/2) dry sand; very weak dry consistence; apedal, single grain structure; 2 % rounded ironstone medium gravels; rapid permeability; roots 1,2; abrupt, smooth boundary.
A21	5-18	pale brown (10YR 6/3) moist, very pale brown (10YR 7/3) dry sand; very weak dry consistence; apedal, single grain structure; 2 % subrounded ironstone medium gravels; rapid permeability; roots 1,1; abrupt, wavy boundary.
A22	18-36	pale brown (10YR 6/3) moist, very pale brown (10YR 7/3) dry sand with 2-4 % clay; very weak dry consistence; apedal, single grain structure; 20 % subrounded ironstone fine gravels and 40 % subrounded ironstone medium gravels; rapid permeability; roots 1,2 & 2,1. Thin bleach (10yr 8/2D) at bottom of horizon over B; sharp, wavy boundary.
B21	36-48	pale brown (10YR 6/3) moist sandy clay loam; few medium distinct strong brown (7.5YR 5/6) moist mottles; strong dry consistence; apedal, massive structure; 5 % subrounded ironstone medium gravels; moderately slow permeability; top of B indurated. Roots 2,1; gradual, wavy boundary.
B22	48-78	light yellowish brown (10YR 6/4) moist medium clay; many medium prominent red (2.5YR 5/6) moist mottles; very firm moderately moist consistence; pedal, moderate, 10-20 mm, subangular blocky structure; 2 % subrounded ironstone medium gravels; moderate permeability; roots nil; diffuse, wavy boundary.
B23	78-105	pale yellow (2.5Y 7/3) moist medium clay; common medium distinct brownish yellow (10YR 6/6) moist mottles and few medium distinct yellowish red (5YR 5/6) moist mottles; firm moderately moist consistence; pedal, moderate, 10-20 mm, angular blocky structure; clay cutans; Object invalid or no longer set.

Project & Site Code: SC2 NDU1

Described by: Noel Schoknecht Date: 21/11/2000

Observation Type/Category:	soil pit, full description		
Lab Analyses:	Limited chemical and physical analyses		
Location:	MGA Zone: 50 683637 mE 6301339 mN		
Locations Notes:	South Newdegate, Barry and Anne Rick		
Site Notes:	MICRORELIEF: SM		
Disturbance:	Natural		
Landform			
Landform pattern:	rises	Slope:	< 1 %
Relief/modal slope:	gently undulating rises		
Landform element:	hillslope	Slope length (m):	700
Morphological type:	Slope curvature: uniform slope		
Relief:	20 m	Pattern Relief:	rises
Surface and Hydrological Proper	ties		
Rock outcrop:	0 %		
Surface coarse fragments:	no coarse fragments gravels, no coarse frag	ments stones	
Physical properties:	Water repellent; firm; moderately deep soil		
Geology/Parent Material			
Soil parent material:	strongly weathered, unconsolidated material (unidentified)		
Geology:	granite		
Vegetation			
Туре:			
Site:	mallee		
Surrounds:	mallee		
Notes:			
Land Use			
Site:	Not used		
Surrounds:	Cropping (may include grazing in rotation)		
Visible Erosion, Assessed Flood	ng and Salinity		
No wind erosion, no scald erosion erosion, no mass movement, no f	n, no sheet erosion, no rill erosion, no gully e looding, no ponding, no salinity.	rosion, no tunnel erosion,	no stbank erosion, no wave
Current Classification			
WA Soil Group:	Grey deep sandy duplex, gravelly (1999)		
Australian Soil Classification:	Ferric Mottled-Mesonatric Yellow Sodosol (2	2002)	

Map Unit: 250Nw_5

Horizon	Depth (cm)	Description
A1	0-12	pale brown (10YR 6/3) moist, very pale brown (10YR 7/3) dry sand; very weak dry consistence; apedal, single grain structure; many, fine roots; 1 % rounded ironstone fine gravels; rapid permeability; plus roots size M, 0-1 %; abrupt, wavy boundary.
A2	12-30	light grey (10YR 7/2) moist, white (10YR 8/2) dry sand; very weak dry consistence; apedal, single grain structure; common, fine roots; 50 % rounded; rapid permeability;Strong bleach at bottom of horizon (2.5 yr 8/1), plus roots size M, 0-1 %; sharp, irregular boundary.
B1	30-40	pale brown (10YR 6/3) moist sandy clay loam; few medium distinct yellowish red (5YR 5/6) moist mottles; strong dry consistence; pedal, weak, 50-100 mm, columnar structure; few, medium roots; 2 % subrounded ironstone fine gravels; moderately slow permeability; line of horizontal large roots at 35 cm. (15-20 mm diameter); gradual, wavy boundary.
B21	40-65	light yellowish brown (10YR 6/4) moist medium clay; common medium distinct yellowish red (5YR 5/6) moist mottles; very firm dry consistence; pedal, weak, 2-5 mm, angular blocky structure; few, coarse roots; moderate permeability; occasional large roots; diffuse, wavy boundary.
B22	65-90	light yellowish brown (10YR 6/4) moist light clay; common medium distinct reddish yellow (7.5YR 6/6) moist mottles; firm moderately moist consistence; pedal, weak, 2-5 mm, subangular blocky structure; few, coarse roots; moderate permeability; occasional large roots; diffuse, wavy boundary.
BC	90-105+	pale yellow (2.5Y 7/3) moist light clay; common fine faint reddish yellow (7.5YR 6/6) moist mottles; firm moderately moist consistence; pedal, weak, 5-10 mm, subangular blocky structure; clay cutans; Object invalid or no longer set.

Project & Site Code: SC2 NHL4

Described by: Bill Verboom Date: 24/10/2000

Observation Type/Category:	soil pit, full description		
Lab Analyses:	Limited chemical and physical analyses		
Location:	MGA Zone: 50 239254 mE 6889688 mN		
Locations Notes:	NW of Northampton, Lyal Reynolds		
Site Notes:			
Disturbance:	Complete clearing; past cultivation		
Landform			
Landform pattern:	rises	Slope:	3 %
Relief/modal slope:	undulating rises		
Landform element:	hillslope	Slope length (m):	500
Morphological type:	mid-slope	Slope curvature:	uniform slope
Relief:	30 m	Pattern Relief:	rises
Surface and Hydrological Proper	ties		
Rock outcrop:	0 %		
Surface coarse fragments:	no coarse fragments gravels, no coarse frag	ments stones	
Physical properties:	loose; very deep soil; water table at 0 cm		
Geology/Parent Material			
Soil parent material:	strongly weathered, unconsolidated material	(unidentified) colluvium	
Geology:	sandstone		
Vegetation			
Туре:			
Site:			
Surrounds:	grassland		
Notes:	pasture, clover, Stipa, doublegee		
Land Use			
Site:	Grazing (grazing of vegetation planted by ma	an)	
Surrounds:	Grazing (grazing of vegetation planted by man)		
Visible Erosion, Assessed Floodi	ng and Salinity		
Slight wind erosion, no scald eros	sion, slight sheet erosion, no rill erosion, no g	gully erosion, no flooding,	no ponding, no salinity.
Current Classification			
WA Soil Group:	Yellow deep sand, (1999)		
Australian Soil Classification:	Basic Regolithic Yellow-Orthic Tenosol (2002	2)	
Map Unit:	232Ur		

Horizon	Depth (cm)	Description
A1	0-10	greyish brown (10YR 5/2) moist, pale brown (10YR 6/3) dry medium sand; very weak dry consistence; apedal, single grain structure; no coarse fragments; rapid permeability; roots many very fine; clear boundary.
A2	10-40	brownish yellow (10YR 6/6) moist, yellow (10YR 7/6) dry medium sand; weak dry consistence; apedal, massive structure; no coarse fragments; moderately rapid permeability; few very fine roots; diffuse boundary.
B1	40-100	brownish yellow (10YR 6/8) moist, yellow (10YR 7/8) dry clayey medium sand; firm moderately moist consistence; apedal, massive structure; no coarse fragments; moderately rapid permeability;medium to coarse sand, very few to no roots; diffuse boundary.
B2	100-160+	brownish yellow (10YR 6/8) moist, yellow (10YR 7/8) dry clayey medium sand; firm moderately moist consistence; apedal, massive structure; no coarse fragments; moderately rapid permeability;medium to coarse sand, no roots.

Project & Site Code: SC2 NHS1

Described by: Bill Verboom Date: 24/10/2000

Observation Type/Category:	soil pit, full description			
Lab Analyses:	Limited chemical and physical analyses			
Location:	MGA Zone: 50 239671 mE 6891057 mN			
Locations Notes:	NW of Northampton, Lyal Reynolds			
Site Notes:	wheel ruts, Some wood 0.5 - 2 cm. diameter	r on ground, wheat stubbl	е	
Disturbance:	Complete clearing; past cultivation			
Landform				
Landform pattern:	rises	Slope:	2 %	
Relief/modal slope:	undulating rises			
Landform element:	hillslope	Slope length (m):	300	
Morphological type:	lower slope	Slope curvature:	convex slope	
Relief:	30 m	Pattern Relief:	rises	
Surface and Hydrological Prope	ties			
Rock outcrop:	0 %			
Surface coarse fragments:	no coarse fragments gravels, no coarse frag	ments stones		
Physical properties:	soft; very deep soil			
Geology/Parent Material				
Soil parent material:	strongly weathered, unconsolidated materia	l (unidentified) colluvium		
Geology:	sandstone			
Vegetation				
Туре:				
Site:				
Surrounds:	heathland			
Notes:	Light pasture, Hypochoeris, Stipa, a little Cl	over & Double Gee (Banks	ia prionotes nearby)	
Land Use				
Site:	Grazing (grazing of vegetation planted by m	an)		
Surrounds:	Not used			
Visible Erosion, Assessed Flood	ing and Salinity			
Severe wind erosion, no scald ero	osion, severe sheet erosion, no rill erosion, no	o gully erosion, no flooding	g, no ponding, no salinity.	
Current Classification				
WA Soil Group:	Yellow deep sand, (1999)			
Australian Soil Classification:	Basic Regolithic Yellow-Orthic Tenosol (200	2)		
Man Unit:	232W/i			

Horizon	Depth (cm)	Description
A1	0-15	greyish brown (10YR 5/2) moist, light grey (10YR 7/2) dry sand; very weak dry consistence; apedal, single grain structure; no coarse fragments; rapid permeability, water repellent; many very fine roots; clear boundary.
A2	15-40	light yellowish brown (10YR 6/4) moist, very pale brown (10YR 7/4) dry sand; weak dry consistence; apedal, massive structure; no coarse fragments; moderately rapid permeability; Few very fine roots, some carbonised remnants of larger K roots; gradual boundary.
B1	40-80	brownish yellow (10YR 6/8) moist sand; weak dry consistence; apedal, massive structure; no coarse fragments; moderately rapid permeability;Very few, very fine roots. Old carbonised coarse (K) roots; diffuse boundary.
B2	80-150+	brownish yellow (10YR 6/8) moist sand; weak moderately moist consistence; apedal, massive structure; no coarse fragments; moderately rapid permeability;Very few, very fine roots. Old carbonised coarse (K) roots.

Project & Site Code: SC2 NHU2

Observation Type/Category:	soil pit, full description		
Lab Analyses:	Limited chemical and physical analyses		
Location:	MGA Zone: 50 239372 mE 6891351 mN		
Locations Notes:	NW of Northampton, Lyal Reynolds		
Site Notes:	MICRORELIEF: Small pedestals. Site photo t	type: C. From 22 to 26. Bi	urnt 5 - 7 years ago
Disturbance:	Natural		
Landform			
Landform pattern:	rises	Slope:	2 %
Relief/modal slope:	undulating rises		
Landform element:	hillslope	Slope length (m):	300
Morphological type:	mid-slope	Slope curvature:	concave slope
Relief:	30 m	Pattern Relief:	rises
Surface and Hydrological Proper	lies		
Rock outcrop:	0 %		
Surface coarse fragments:	no coarse fragments gravels, no coarse frag	ments stones	
Physical properties:	loose; very deep soil		
Geology/Parent Material			
Soil parent material:	strongly weathered, unconsolidated material	(unidentified) Colluvium	
Geology:	sandstone		
Vegetation			
Туре:			
Site:	heathland		
Surrounds:	no vegetation		
Notes:			
Land Use			
Site:	Not used		
Surrounds:	Not used		
Visible Erosion, Assessed Floodi	ng and Salinity		
No wind erosion, no sheet erosior	n, no rill erosion, no gully erosion, no flooding	g, no ponding, no salinity.	
Current Classification			
WA Soil Group:	Yellow deep sand, (1999)		
Australian Soil Classification:	Basic Regolithic Yellow-Orthic Tenosol (2002	2)	

Map Unit: 232Ba

Horizon	Depth (cm)	Description
A1	0-10	dark grey (10YR 4/1) moist, light brownish grey (10YR 6/2) dry medium sand; very weak dry consistence; apedal, single grain structure; no coarse fragments; moderately rapid permeability; clear boundary.
A21	10-30	light yellowish brown (10YR 6/4) moist, very pale brown (10YR 7/3) dry medium sand; very weak dry consistence; apedal, single grain structure; no coarse fragments; moderately rapid permeability; diffuse boundary.
A22	30-100	brownish yellow (10YR 6/6) moist, very pale brown (10YR 7/4) dry medium sand with 4-8% clay; weak dry consistence; apedal, single grain structure; no coarse fragments; moderately rapid permeability; clear boundary.
B2	100-160+	brownish yellow (10YR 6/8) moist clayey sand; very firm moist consistence; apedal, massive structure; no coarse fragments; moderately rapid permeability.

Project & Site Code: SC2 NSL4

Described by: Noel Schoknecht Date: 21/11/2000

Observation Type/Category:	soil pit, full description		
Lab Analyses:	Limited chemical and physical analyses		
Location:	MGA Zone: 50 685583 mE 6304203 mN		
Locations Notes:	South Newdegate, Barry and Anne Rick		
Site Notes:	Fallow, over grazed		
Disturbance:	Complete clearing; past cultivation		
Landform			
Landform pattern:	rises	Slope:	2 %
Relief/modal slope:	gently undulating rises		
Landform element:	hillslope	Slope length (m):	500
Morphological type:	mid-slope	Slope curvature:	uniform slope
Relief:		Pattern Relief:	rises
Surface and Hydrological Proper	ties		
Rock outcrop:	0 %		
Surface coarse fragments:	no coarse fragments gravels, no coarse frag	ments stones	
Physical properties:	Water repellent; loose; shallow soil		
Geology/Parent Material			
Soil parent material:	strongly weathered, unconsolidated material	l (unidentified) Colluvium	
Geology:	granite		
Vegetation			
Type:			
Site:			
Surrounds:			
Notes:			
Land Use			
Site:	Grazing (grazing of vegetation planted by ma	an)	
Surrounds:			
Visible Erosion, Assessed Floodi	ng and Salinity		
Moderate wind erosion, no scald	erosion, slight sheet erosion, no rill erosion,	no gully erosion, no floodi	ng, no ponding, no salinity.
Current Classification			
WA Soil Group:	Alkaline grey shallow sandy duplex, sodic (1	999)	
Australian Soil Classification:	Eutrophic Mottled-Mesonatric Grey Sodosol	(2002)	
Map Unit:	250Nw_5		

Horizon	Depth (cm)	Description
A1	0-9	greyish brown (10YR 5/2) moist, light grey (10YR 7/2) dry fine sand; very weak dry consistence; apedal, single grain structure; 1 % rounded ironstone fine gravels; rapid permeability; roots 1,2; clear boundary.
A2	9-18	light grey (10YR 7/2) moist, white (10YR 8/2) dry fine sand; weak dry consistence; apedal, single grain structure; 20 % subrounded ironstone fine gravels and 13 % subangular ironstone medium gravels; rapid permeability; gravel shape SR. Roots 1,1; sharp boundary.
B1	18-40	pinkish grey (7.5YR 7/3) moist, pink (7.5YR 7/4) dry sandy loam; few fine distinct reddish yellow (5YR 6/8) moist mottles and common medium distinct brown (7.5YR 4/2) moist mottles; very strong dry consistence; pedal, weak, 200-500 mm, columnar structure; no coarse fragments; domed (clay) domes morte or less 20 cm wide. Sodic columns. No roots. Dark mottling due to old root channels; diffuse boundary.
B21	40-75	pale yellow (2.5Y 7/3) moist, pale yellow (5Y 8/3) dry medium clay; common fine prominent yellow (10YR 7/6) moist mottles; strong moderately moist consistence; pedal, weak, 20-50 mm, angular blocky structure; 1 % subrounded ironstone fine gravels; no roots; gradual boundary.
B22	75-90+	light grey (2.5Y 7/2) moist light clay; common fine prominent yellow (10YR 7/6) moist mottles; very firm moderately moist consistence; pedal, weak, 10-20 mm, angular blocky structure; 5 % subrounded silcrete cobbles; lumps of silcrete more or less 100 mm size at about 80 cm. No roots.

Project & Site Code: SC2 NSS1

Described by: Noel Schoknecht Date: 21/11/2000

Observation Type/Category:	soil pit, full description		
Lab Analyses:	Limited chemical and physical analyses		
Location:	MGA Zone: 50 682826 mE 6301421 mN		
Locations Notes:	South Newdegate, Barry and Anne Rick		
Site Notes:	Photo frame: 10 - 15		
Disturbance:	Complete clearing; past cultivation		
Landform			
Landform pattern:	rises	Slope:	< 1 %
Relief/modal slope:	gently undulating rises		
Landform element:	hillslope	Slope length (m):	500
Morphological type:	lower slope	Slope curvature:	uniform slope
Relief:	20 m	Pattern Relief:	rises
Surface and Hydrological Proper	ties		
Rock outcrop:	0 %		
Surface coarse fragments:	no coarse fragments gravels, no coarse frag	ments stones	
Physical properties:	soft; moderately deep soil		
Geology/Parent Material			
Soil parent material:	strongly weathered, unconsolidated material	(unidentified) Colluvium	
Geology:	granite		
Vegetation			
Type:			
Site:			
Surrounds:			
Notes:	Pasture: sub-clover, Vulpia, radish, lots of st	tubble from last year cerea	al
Land Use			
Site:	Grazing (grazing of vegetation planted by ma	an)	
Surrounds:	Not used		
Visible Erosion, Assessed Flood	ing and Salinity		
No wind erosion, no scald erosion	n, no sheet erosion, no rill erosion, no gully e	rosion, no flooding, no po	nding, no salinity.
Current Classification			
WA Soil Group:	Alkaline grey shallow sandy duplex, sodic (1	999)	
Australian Soil Classification:	Eutrophic Mottled-Subnatric Grey Sodosol (2002)	
Map Unit:	250Nw_5		

Horizon	Depth (cm)	Description
A11	0-6	very dark grey (10YR 3/1) moist, dark greyish brown (10YR 4/2) dry sand; loose dry consistence; apedal, single grain structure; many, very fine roots; 1 % subrounded ironstone medium gravels; rapid permeability; roots 1,3.
A12	6-17	brown (10YR 5/3) moist, pale brown (10YR 6/3) dry sand; very weak dry consistence; apedal, single grain structure; common, very fine roots; 1 % subrounded ironstone medium gravels; rapid permeability; roots 1,2.
A2	17-26	light grey (10YR 7/2) moist, white (10YR 8/2) dry sand; weak dry consistence; apedal, single grain structure; few, very fine roots; 5 % subrounded ironstone medium gravels; rapid permeability; roots 1,1 & 3,1.
B1	26-33	pale brown (10YR 6/3) moist sandy loam; common medium faint brownish yellow (10YR 6/6) moist mottles; strong moderately moist consistence; pedal, weak, 100-200 mm, columnar structure; few, medium roots; no coarse fragments; moderately rapid permeability; weak column development. Soil structure largely massive. Roots 3,1. If sodic, then only just.
B21	33-70	light yellowish brown (10YR 6/4) moist medium clay; common medium distinct reddish yellow (7.5YR 6/8) moist mottles; firm moderately moist consistence; pedal, moderate, 10-20 mm, angular blocky structure; few, very fine roots; no coarse fragments; moderately slow permeability; roots 1,1.
B22	70-75+	light grey (2.5Y 7/2) moist light clay; many medium distinct brownish yellow (10YR 6/6) moist mottles and few medium distinct light reddish brown (5YR 6/4) moist mottles; firm moderately moist consistence; pedal, weak, 20-50 mm, angular blocky structure; no coarse fragments; moderately slow permeability; texture becoming lighter with depth. Perhaps SCL at 120 cm.

Project & Site Code: SC2 NSU4

Described by: Bill Verboom Date: 21/11/2000

Observation Type/Category:	soil pit, full description		
Lab Analyses:	Limited chemical and physical analyses		
Location:	MGA Zone: 50 685634 mE 6304170 mN		
Locations Notes:	South Newdegate, Barry and Anne Rick		
Site Notes:	MICRORELIEF: Pedestals		
Disturbance:	Natural		
Landform			
Landform pattern:	rises	Slope:	1 %
Relief/modal slope:	gently undulating rises		
Landform element:	hillslope	Slope length (m):	
Morphological type:	mid-slope	Slope curvature:	uniform slope
Relief:	20 m	Pattern Relief:	rises
Surface and Hydrological Proper	ties		
Rock outcrop:	0 %		
Surface coarse fragments:	no coarse fragments gravels, no coarse frag	ments stones	
Physical properties:	surface crust; moderately deep soil		
Geology/Parent Material			
Soil parent material:	strongly weathered, unconsolidated material	(unidentified) Colluvium	
Geology:	granite		
Vegetation			
Туре:			
Site:			
Surrounds:			
Notes:			
Land Use			
Site:	Not used		
Surrounds:	Cropping (may include grazing in rotation)		
Visible Erosion, Assessed Flood	ing and Salinity		
No wind erosion, no scald erosion	n, no sheet erosion, no rill erosion, no gully e	rosion, no flooding, no po	nding, no salinity.
Current Classification			
WA Soil Group:	Alkaline grey shallow sandy duplex, sodic (1	999)	
Australian Soil Classification:	Eutrophic Mottled-Subnatric Grey Sodosol (2002)	
Map Unit:	250Nw_5		

Horizon	Depth (cm)	Description
A1	0-10	brown (10YR 5/3) moist, light grey (10YR 7/2) dry fine sand; weak dry consistence; single grain structure; no coarse fragments; moderately rapid permeability, water repellent; 1 mm surface seal in bare patches, hydrophobic below surface; clear, smooth boundary.
A2	10-18	light grey (2.5Y 7/2) moist, white (2.5Y 8/1) dry fine sand; very weak dry consistence; single grain structure; no coarse fragments; moderately rapid permeability, water repellent; no pan evident; sharp, wavy boundary.
B1	18-30	light grey (2.5Y 7/2) moist sandy loam; abundant medium yellowish red (5YR 5/8) moist redox mottles; rigid dry consistence; moderate, 100-200 mm, columnar structure; 2 % subrounded ironstone medium gravels occasional clusters of pisolithic gravel, very variable, about 1 cm; slow permeability, non water repellent; sodic columns, bleaches on surface for about 0.5 cm; gradual boundary.
B21	30-60	pale yellow (2.5Y 7/3) moist; many medium brownish yellow (10YR 6/8) moist redox mottles; very strong moderately moist consistence; massive structure; no coarse fragments; moderate permeability, non water repellent; gradual boundary.
B22	60-90+	yellow (5Y 7/5) moist; many medium olive yellow (2.5Y 6/6) moist redox mottles; very strong moderately moist consistence; massive structure; 20 % subrounded coarse gravels silcrete, some preserving whole Fe pissolites, i.e. evidence of over printing; moderate permeability, non water repellent.

Project & Site Code: SC2 WHL4

Described by: Brendan Nicholas Date: 21/02/2001

Observation Type/Category:	soil pit, full description		
Lab Analyses:	Limited chemical and physical analyses		
Location:	MGA Zone: 51 412041 mE 6300680 mN		
Locations Notes:	Wittenoom Hills, see notes for WHS2		
Site Notes:			
Disturbance:	Cultivation, rainfed		
Landform			
Landform pattern:	plain	Slope:	1 %
Relief/modal slope:	level plain		
Landform element:	plain	Slope length (m):	
Morphological type:	simple slope	Slope curvature:	
Relief:		Pattern Relief:	plain
Surface and Hydrological Proper	ties		
Rock outcrop:	0 %		
Surface coarse fragments:	very few subangular calcrete gravels, no coa	urse fragments stones	
Physical properties:	soft; moderately deep soil		
Geology/Parent Material			
Soil parent material:	strongly weathered, unconsolidated material	(unidentified) Tertiary ma	rine sediments
Geology:			
Vegetation			
Туре:			
Site:			
Surrounds:			
Notes:	Some active annual weeds and medic pasturold root channels	re from summer rain. Roo	ts in lower B tend to follow
Land Use			
Site:	Cropping (may include grazing in rotation)		
Surrounds:	Cropping (may include grazing in rotation)		
Visible Erosion, Assessed Floodi	ng and Salinity		
No wind erosion, no scald erosior	n, no sheet erosion, no rill erosion, no gully e	rosion, no flooding, no po	nding, no salinity.
Current Classification			
WA Soil Group:	Alkaline grey shallow sandy duplex, (1999)		
Australian Soil Classification:	Hypercalcic Mesonatric Grey Sodosol (2002))	
Soil Series:	Scaddan		
Map Unit:	246Ha_1		

Horizon	Depth (cm)	Description
Ар	0-10	dark grey (10YR 4/1) moist, light brownish grey (10YR 6/2) dry fine sand; weak dry consistence; pedal, weak, 5-10 mm, platy structure; many, fine roots; no coarse fragments; moderate permeability; abrupt, smooth boundary.
A2	10-20	light yellowish brown (10YR 6/4) moist fine sandy clay loam; very firm moderately moist consistence; pedal, strong, 100-200 mm, columnar structure; few, fine roots; 5 % calcrete medium gravels hard and soft; slow permeability; clear, smooth boundary.
B1	20-30	light brownish grey (2.5Y 6/2) moist fine sandy clay loam; very pale brown (10YR 7/3) moist and olive (5Y 5/6) moist ; strong moist consistence; pedal, strong, 5-10 mm, angular blocky structure; few, fine roots; 30% calcrete medium gravels hard and soft; moderately slow permeability; gradual, smooth boundary.
B2	30-70	light brownish grey (2.5Y 6/2) moist light clay; yellowish red (5YR 5/6) moist ; strong moist consistence; pedal, strong, 5-10 mm, angular blocky structure; few, fine roots; 15% calcrete in pockets; moderate permeability; diffuse boundary.
BC	70-130+	light brownish grey (2.5Y 6/2) moist light clay; yellowish red (5YR 5/6) moist ; strong moist consistence; pedal, strong, 5-10 mm, angular blocky structure; no; no coarse fragments; moderate permeability.

Project & Site Code: SC2 WHS2

Observation Type/Category:	soil pit, full description		
Lab Analyses:	Detailed chemical and physical analyses		
Location:	MGA Zone: 51 415159 mE 6300713 mN Ele	evation (m): Map sheet:	
Locations Notes:	Wittenoom Hills, site appears to have a large carbonates being lower in the profile and do	e catchment than WHL sit me and bleach better dev	es possibly contributing to eloped
Site Notes:			
Disturbance:	Cultivation, rainfed		
Landform			
Landform pattern:	plain	Slope:	< 1 %
Relief/modal slope:	level plain		
Landform element:	plain	Slope length (m):	
Morphological type:	flat	Slope curvature:	
Relief:		Pattern Relief:	plain
Surface and Hydrological Proper	lies		
Rock outcrop:	0 %		
Surface coarse fragments:	very few subangular silcrete gravels, no coal	rse fragments stones	
Physical properties:	soft; moderately deep soil		
Geology/Parent Material			
Soil parent material:	strongly weathered, unconsolidated material	(unidentified) Tertiary ma	arine sediments
Geology:			
Vegetation			
Туре:			
Site:			
Surrounds:			
Notes:			
Land Use			
Site:	Cropping (may include grazing in rotation)		
Surrounds:	Cropping (may include grazing in rotation)		
Visible Erosion, Assessed Floodi	ng and Salinity		
No wind erosion, no scald erosion no salinity.	ı, no sheet erosion, no rill erosion, no gully e	rosion, no tunnel erosion,	, no flooding, no ponding,
Current Classification			
WA Soil Group:	Alkaline grey shallow sandy duplex, (1999)		
Australian Soil Classification:	Hypercalcic Subnatric Grey Sodosol (2002)		
Soil Series:	Scaddan		
Map Unit:	246Sc_7		

Horizon	Depth (cm)	Description
Ар	0-10	dark grey (10YR 4/1) moist, light brownish grey (10YR 6/2) dry fine sand; weak dry consistence; pedal, weak, 5-10 mm, platy structure; no coarse fragments; moderate permeability; clear, smooth boundary.
A2	10-20	dark grey (10YR 4/1) moist fine sandy clay loam; very firm moderately moist consistence; pedal, strong, 100-200 mm, columnar structure; 10 % calcrete medium gravels hard and soft; slow permeability; clear, smooth boundary.
B1	20-30	light brownish grey (2.5Y 6/2) moist fine sandy clay loam; very pale brown (10YR 7/3) moist ; strong moist consistence; pedal, strong, 5-10 mm, angular blocky structure; 15 % silcrete medium gravels hard and soft; moderately slow permeability; gradual, smooth boundary.
B2	30-70	pale red (2.5YR 6/2) moist light clay; reddish yellow (5YR 6/6) moist; strong moist consistence; pedal, strong, 5-10 mm, angular blocky structure; 2 % silcrete medium gravels pockets; moderate permeability; diffuse boundary.
BC	70-130+	light brownish grey (2.5Y 6/2) moist light clay; reddish yellow (5YR 6/6) moist; strong moist consistence; pedal, strong, 5-10 mm, angular blocky structure; no coarse fragments; moderate permeability.

Project & Site Code: SC2 WHU2

Described by: Bill Verboom Date: 22022001

Observation Type/Category:	soil pit, full description		
Lab Analyses:	Detailed chemical and physical analyses		
Location:	MGA Zone: 51 415164 mE 6300814 mN		
Locations Notes:	Wittenoom Hills		
Site Notes:			
Disturbance:	Natural		
Landform			
Landform pattern:	plain	Slope:	< 1 %
Relief/modal slope:	level plain		
Landform element:	plain	Slope length (m):	
Morphological type:	flat	Slope curvature:	uniform slope
Relief:		Pattern Relief:	plain
Surface and Hydrological Proper	ties		
Rock outcrop:	0 %		
Surface coarse fragments:	very few subangular silcrete gravels, no coa	rse fragments stones	
Physical properties:	firm; ; moderately deep soil		
Geology/Parent Material			
Soil parent material:	strongly weathered, unconsolidated material	(unidentified) Tertiary ma	rine sediments
Geology:			
Vegetation			
Type:			
Site:			
Surrounds:	mallee		
Notes:			
Land Use			
Site:	Not used		
Surrounds:	Not used		
Visible Erosion, Assessed Floodi	ng and Salinity		
No wind erosion, no scald erosior	n, no sheet erosion, no rill erosion, no gully e	rosion, no flooding, slight	ponding, no salinity.
Current Classification			
WA Soil Group:	Alkaline grey shallow sandy duplex, (1999)		
Australian Soil Classification:	Hypercalcic Mesonatric Grey Sodosol (2002)	
Soil Series:	Scaddan		
Map Unit:	246Sc_7		

Horizon	Depth (cm)	Description
A1	0-5	brown (7.5YR 5/4) moist fine sand; weak dry consistence; apedal, massive structure; no coarse fragments; moderate permeability; abrupt, wavy boundary.
B11	5-20	dark grey (10YR 4/1) moist fine sandy clay loam; very firm dry consistence; pedal, strong, 100-200 mm, columnar structure; 5% calcrete medium gravels soft and hard; slow permeability; clear, smooth boundary.
B12	20-30	pale red (2.5YR 6/2) moist fine sandy clay loam; strong dry consistence; pedal, strong, 5-10 mm, angular blocky structure; 10% calcrete coarse gravels soft and hard; moderately slow permeability; gradual, smooth boundary.
B2	30-70	pale red (2.5YR 6/2) moist fine sandy clay; reddish yellow (7.5YR 6/6) moist ; strong moderately moist consistence; pedal, strong, 5-10 mm, angular blocky structure; 2% calcrete medium gravels soft and hard; moderate permeability; diffuse boundary.
BC	70-130	pale red (2.5YR 6/2) moist fine sandy clay; reddish yellow (7.5YR 6/6) moist ; strong moderately moist consistence; pedal, strong, 5-10 mm, angular blocky structure; no coarse fragments; moderate permeability.

ATTACHMENT A

PROFILE PHOTOS FOR REPRESENTATIVE PITS FROM EACH LOCATION

(WA Soil Group and Australian Soil Classifications beneath)

Badgingarra (BAL2)

Pale deep sand

Basic Arenic Bleached-Orthic Tenosol

Merredin (MEL3)

Acid yellow sandy earth

Acidic Mesotrophic Yellow Kandosol

Reticulite deep sandy duplex

Acidic Ferric-Petroferric Bleached-Orthic Tenosol

Mullewa (MUU3)

Yellow deep sand

Acidic Ferric-Reticulate Yellow-Orthic Tenosol Condingup (COL3)

Yellow/brown deep sandy duplex

Ferric Eutrophic Yellow Chromosol

Newdegate deep (NDS4)

Grey deep sandy duplex

Ferric Mottled-Subnatric Yellow Sodosol

Newdegate shallow (NSS1)

Alkaline grey shallow sandy duplex

Eutrophic Mottled-Subnatric Grey Sodosol Northampton (NHS3)

Yellow deep sand

Basic Regolithic Yellow-orthic Tenosol Wittenoom Hills (WHS2)

Alkaline grey shallow sandy duplex

Hypercalcic Subnatric Grey Sodosol

APPENDIX 2

Organic Carbon, Bulk Density and Clay Content

LEGEND

00	Organic Carbon
t/ha	Tonnes per hectare
wt %	Percent weight

TABLE OF CONTENTS

	Page No.
Northampton	89
Badgingarra	92
Brookton	95
Mullewa	97
Merredin	100
Newdegate (deep)	103
Newdegate (shallow)	106
Wittenoom Hills	108
Condingup	110

Vlinerals)C OC mass t%) (t/ha)																										.31 0.1	
Coarse I	wt% of C sample (w		0	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	-	
inics	OC mass (t/ha)																							2.5	0.3			
Coarse Orga	0C (wt%)																							13.7	2.55			
	wt% of sample			0	0	0	0	0	0	-	0	0	0	0	0	0	2	0	0	0	0	0	0			0	C	>
l	OC mass (t/ha)		7.7	6.3	2.5	3.9	4.5	4.1	3.6	10.7	6.2	2.8	4.3	5.5	5.6	5.3	13.3	5.1	2.4	4.0	5.5	4.5	3.1	13.3	4.7	2.8	3.6	0.0
4	Source																											
Fine Eart	0C (wt%)		0.48	0.37	0.15	0.12	0.09	0.08	0.07	0.68	0.38	0.17	0.13	0.11	0.11	0.10	0.84	0.31	0.14	0.12	0.11	0.09	0.06	0.82	0.28	0.17	0 11	
l	Clay (wt%)		4	2	7	6	12	12	12	4	5	9	∞	1	13	12	4	5	9	œ	10	12	÷	4	2	∞	10	2
	wt% of sample		66	100	100	100	100	100	100	66	100	100	100	100	100	100	98	100	100	100	100	100	100	66	66	100	60	0
Density	Result		1.63	1.70	1.66	1.64	1.66	1.71	1.71	1.59	1.65	1.66	1.66	1.68	1.69	1.77	1.62	1.64	1.69	1.66	1.68	1.67	1.75	1.64	1.68	1.68	1 66	
Bulk	Method		core	COLE	0000																							
epth	r Lower		10	20	30	50	80	110	140	10	20	30	50	80	110	140	10	20	30	50	80	110	140	10	20	30	20	2
0	e Upper		0	10	20	30	50	80	110	0	10	20	30	50	80	110	0	10	20	30	50	80	110	0	10	20	30	2
	le Samplu		A	В	C	Ω	ш	ш	ധ	A	В	C	D	ш	ш	5	A	В	ပ	D	ш	ш	IJ	A	Β	C		2
	se Sampl point			-	-	-				2	2	2	2	2	2	2	ŝ	ŝ	ო	ŝ	ę	ę	ę	4	4	4	4	-
	Landus	oton	_	_	_	_					_			_		_	_							_	_		-	1
	Location	Northamp	HN																									

rals)C mass (t/ha)		0.0																									
rse Minel	0C ((wt%)		0.07																									
Coai	wt% of sample	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
lics	OC mass (t/ha)			2.4	0.3																							
oarse Orgai	0C (wt%)			10.4	4.20																							
Ū	wt% of sample	0	0	2	0	0	0	0	0	0	2	0	0	0	0	0	0	2	0	0	0	0	0	0		0	0	0
	OC mass (t/ha)	4.0	3.1	9.7	5.4	2.3	2.3	3.0	3.5	3.6	9.7	2.7	1.7	2.7	3.0	3.6	3.0	9.6	4.6	2.0	2.3	3.6	3.0	3.6	9.1	3.9	2.2	2.7
	Source																											
Fine Earth	0C (wt%)	0.08	0.06	0.65	0.32	0.14	0.07	0.06	0.07	0.07	0.61	0.16	0.10	0.08	0.06	0.07	0.06	0.65	0.28	0.12	0.07	0.07	0.06	0.07	0.58	0.23	0.13	0.08
	Clay (wt%)	12	÷	2	ę	ę	ę	5	1	12	ę	ი	co	4	5	12	12	2	S	ę	ę	5	9	12	2	ę	ი	ŝ
l	wt% of sample	100	66	66	100	100	100	100	100	100	98	100	100	100	100	100	100	98	100	100	100	100	100	100	66	100	100	100
ensity	Result	1.69	1.73	1.52	1.68	1.64	1.64	1.67	1.69	1.72	1.61	1.70	1.69	1.68	1.66	1.70	1.69	1.51	1.63	1.67	1.68	1.71	1.69	1.74	1.58	1.70	1.68	1.70
Bulk Do	Method	core	core	core	core	core	core	core	core	core	core	core	core	core	core	core	core	core	core	core	core							
th th	Lower	110	140	10	20	30	50	80	110	140	10	20	30	50	80	110	140	10	20	30	50	80	110	140	10	20	30	50
Dep	Upper	80	110	0	10	20	30	50	80	110	0	10	20	30	50	80	110	0	10	20	30	50	80	110	0	10	20	30
	Sample	ш	ധ	A	в	S	D	ш	ш	പ	A	в	5	D	ш	ш	с	A	В	S	D	ш	ш	IJ	A	в	S	D
	Sample point	4	4								2	2	2	2	2	2	2	S	3	ŝ	ŝ	ç	S	ŝ	4	4	4	4
	Landuse	_	_	S	S	S	လ	S	S	S	လ	S	S	S	S	လ	လ	S	S	လ	ა	S	S	S	S	S	S	S
	Location	HN	HN	HN	HN	HN	HN	HN	HN	HN	HN	HN	HN	HN	HN	HN	HN	HN	HN	HN	HN							

inerals	C OC mass %) (t/ha)																											
arse N	(wt 0																											
C02	wt% of sample	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
nics	OC mass (t/ha)											4.4	2.2	1.2	1.9	0.3												
coarse Orga	0C (wt%)											7.04	4.50	9.31	14.0	5.80												
0	wt% of sample	0	0	0	5	S	-		0	0	0	4	S	-	0	0	0	0	က	-	-	-	0	0	0	8	4	с
l	OC mass (t/ha)	3.6	3.1	3.1	9.9	5.8	3.4	3.9	4.5	3.5	6.2	8.3	4.8	4.3	3.7	4.1	4.6	5.5	10.8	4.9	2.7	3.0	4.6	3.5	4.1	9.4	7.3	5.5
l	Source																											
Fine Earth	0C (wt%)	0.07	0.06	0.06	0.74	0.40	0.21	0.12	0.09	0.07	0.12	0.57	0.32	0.27	0.11	0.08	0.09	0.11	0.74	0.29	0.17	0.09	0.09	0.07	0.08	0.77	0.50	0.39
	Clay (wt%)	9	11	#	2	2	2	2	2	4	20	2	2	2	2	ŝ	5	17	2	2	2	2	°	9	15	ŝ	ŝ	с
l	wt% of sample	100	100	100	95	97	66	66	100	100	100	96	97	66	100	100	100	100	97	66	66	66	100	100	100	92	96	98
ensity	Result	1.69	1.71	1.74	1.41	1.48	1.63	1.64	1.66	1.68	1.74	1.52	1.54	1.62	1.68	1.72	1.70	1.68	1.50	1.71	1.63	1.66	1.70	1.65	1.72	1.33	1.53	1.45
Bulk D	Method	core	core	core	COLE	core	COLE	COLE	core	COLE	core																	
pth	Lower	80	110	140	10	20	30	50	80	110	140	10	20	30	50	80	110	140	10	20	30	50	80	110	140	10	20	30
Del	Upper	50	80	110	0	10	20	30	50	80	110	0	10	20	30	50	80	110	0	10	20	30	50	80	110	0	10	20
	Sample	ш	ш	IJ	A	В	C	Ω	ш	ш	G	A	В	C	D	ш	ш	G	A	В	C	D	ш	ш	IJ	A	В	C
	Sample point	4	4	4		-		-	-		-	2	2	2	2	2	2	2	co	S	З	S	co	c,	3	4	4	4
	Landuse	ഗ	S	S																							Π	
	Location	HN																										

San po	int	Sample	Dep Upper	th Lower	Bulk De Method	nsity Result	wt% of sample	Clay (wt%)	Fine Earth 0C (wt%)	Source	OC mass (t/ha)	Co wt% of sample	aarse Orga 0C (wt%)	nics OC mass (t/ha)	Coa wt% of sample	rse Minera OC OC (wt%)	nass (t/ha)
4 D 30	D 30	30		50	core	1.39	96	ი	0.48		12.8	4			0		
4 E 50	E 50	50		80	core	1.49	96	4	0.42		18.0	4			0		
4 F 80	F 80	80		110	core	1.59	100	∞	0.09		4.3	0			0		
4 G 110	G 110	110		140	core	1.70	100	12	0.10		5.1	0			0		
1 A 0	A 0	0		10	core	1.63	66	-	0.71		11.4	-			0		
1 B 10	B 10	10		20	core	1.62	100	-	0.31		5.0	0			0		
1 C 20	C 20	20		30	core	1.62	100	-	0.13		2.1	0			0		
1 D 30	D 30	30		50	core	1.57	100	-	0.10		3.1	0			0		
1 E 50 8	E 50 8	50 8		30	core	1.60	100	2	0.08		3.8	0			0		
1 F 80 1	F 80 1	80 1	÷	10	core	1.66	98	с	0.08		3.9	0			2		
1 G 110 1	G 110 15	110 19	Ŧ	20	core	1.61	89	2	0.08		4.6	0			1		
1 H 150 1	H 150 1	150 1	-	20	core	1.69	84	5	0.10		2.8	0			16		
2 A 0	A 0	0		10	core	1.62	98	-	0.77		12.2	2	7.62	2.0	0		
2 B 10	B 10	10		20	core	1.65	100		0.26		4.3	0	11.8	0.5	0		
2 C 20	C 20	20		30	core	1.66	100		0.17		2.8	0	9.41	0.6	0		
2 D 30	D 30	30		50	core	1.61	100		0.13		4.2	0			0		
2 E 50	E 50	50		80	core	1.65	100	2	0.09		4.4	0			0	0.70	0.1
2 F 80 1	F 80	80	-	10	core	1.66	97	ę	0.08		3.9	0			ŝ	0.20	0.3
2 G 110	G 110	110		150	core	1.66	06	ę	0.06		3.6	0			10	0.13	0.9
2 H 150	H 150	150		170	core	1.72	79	14	0.10		2.7	0			21	0.08	0.6
3 A 0	A 0	0		10	core	1.61	98	-	0.69		10.9	2			0		
3 B 10	B 10	10		20	core	1.67	100	2	0.28		4.7	0			0		
3 C 20	C 20	20		30	core	1.62	100		0.14		2.3	0			0		
3 D 30	D 30	30		50	core	1.54	100		0.08		2.5	0			0		
3 E 50	E 50	50		80	core	1.57	100	-	0.08		3.7	0			0		

erals	OC mass (t/ha)																											
rse Min	0C (wt%)																											
Coa	wt% of sample	-	2	8	0	0	0	0		2	21	22	0	0	0	0	0	0		7	0	0	0	0	0	0	4	o
nics	OC mass (t/ha)																				6.2	0.5						
oarse Orga	0C (wt%)																				25.5	5.62						
5	wt% of sample	0	0	0	2	-	0	0	0	0	0	0	2	0	0	0	0	0	0	0	2	-	0	0	0	0	0	c
	OC mass (t/ha)	3.4	5.8	1.8	10.6	4.7	2.3	2.8	2.9	3.9	3.7	1.8	11.3	6.6	2.5	3.9	5.3	6.5	4.3	3.1	10.2	4.9	2.3	3.5	6.8	5.9	4.7	10
	Source																											
Fine Earth	0C (wt%)	0.07	0.09	0.06	0.66	0.28	0.14	0.09	0.06	0.08	0.07	0.07	0.76	0.41	0.15	0.12	0.11	0.13	0.09	0.10	0.69	0.30	0.14	0.11	0.14	0.12	0.10	0.08
	Clay (wt%)	2	2	ę					2	ę	ŝ	4	2	2	2	2	ŝ	10	10	12	-	-		2	5	œ	11	÷
	wt% of sample	66	98	92	98	66	100	100	66	98	79	78	98	100	100	100	100	100	66	93	98	100	100	100	100	100	96	00
ensity	Result	1.64	1.63	1.67	1.64	1.70	1.64	1.56	1.61	1.64	1.65	1.63	1.52	1.61	1.65	1.62	1.60	1.66	1.64	1.68	1.51	1.64	1.65	1.58	1.61	1.63	1.64	164
Bulk De	Method	core	COLP																									
th	Lower	110	150	170	10	20	30	50	80	110	150	170	10	20	30	50	80	110	140	160	10	20	30	50	80	110	140	160
Dep	Upper	80	110	150	0	10	20	30	50	80	110	150	0	10	20	30	50	80	110	140	0	10	20	30	50	80	110	140
	Sample	ш	IJ	н	A	в	S	Ω	ш	ц	G	н	A	В	S	D	ш	ц	G	н	A	В	S	D	ш	ш	G	т
	Sample point	ę	S	ŝ	4	4	4	4	4	4	4	4	-	-	-	-	-		-		2	2	2	2	2	2	2	6
	Landuse			_							_	_	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	c.
	Location	BA	RΔ																									

inerals	%) 0C mass (t/ha)																											
Coarse M	ple (wt ^o	0	0	0	0	0	2	2	6	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0
	sam																											
anics	OC mass (t/ha)																	3.4	2.0	1.0								
Coarse Org	0C (wt%)																	8.35	8.87	13.8								
	wt% of sample		-	-	0	0	0	0	0		-	0	0	0	0	0	0	ŝ	-	0	-	0	0	0	∞			0
	OC mass (t/ha)	10.2	5.5	3.2	3.2	4.3	4.7	4.3	2.4	9.9	6.7	3.0	3.4	5.4	5.7	4.9	2.4	11.5	6.4	3.2	5.1	4.2	3.5	3.8	9.4	4.6	2.7	4.2
	Source																											
Fine Earth	0C (wt%)	0.68	0.34	0.20	0.10	0.09	0.10	0.09	0.08	0.65	0.42	0.19	0.11	0.12	0.12	0.10	0.08	0.86	0.42	0.21	0.11	0.09	0.07	0.08	0.69	0.31	0.18	0.09
	Clay (wt%)	2	2			ę	10	10	10	2	2	2		2	80	÷	10	2	2	2	ę	9	7	9	2	2	2	ę
	wt% of sample	66	66	66	100	100	98	98	91	66	66	100	100	100	66	100	06	97	66	100	66	100	100	100	92	66	66	100
ensity	Result	1.51	1.64	1.62	1.58	1.61	1.62	1.62	1.68	1.54	1.61	1.57	1.57	1.51	1.61	1.63	1.64	1.39	1.54	1.55	1.54	1.57	1.67	1.58	1.48	1.49	1.51	1.57
Bulk Do	Method	core																										
e.	Lower	10	20	30	50	80	110	140	160	10	20	30	50	80	110	140	160	10	20	30	60	06	120	150	10	20	30	60
Depi	Upper	0	10	20	30	50	80	110	140	0	10	20	30	50	80	110	140	0	10	20	30	60	06	120	0	10	20	30
	Sample	A	в	S	D	ш	ш	പ	т	A	В	S	D	ш	ш	പ	т	A	в	S	D	ш	ш	പ	A	в	5	Ω
	Sample point	с	co	co	ę	с	с	co	co	4	4	4	4	4	4	4	4								2	2	2	2
	Landuse	S	ა	ა	လ	S	S	ა	ა	လ	S	ა	ა	ა	လ	S	ა											
	Location	BA																										

se Minerals	0C 0C mass (wt%) (t/ha)																											
Coar	wt% of sample		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0		-	S	38	84	0	
nics	OC mass (t/ha)																										1.2	
coarse Orga	0C (wt%)																										7.92	
0	wt% of sample		0	0	0	က	2	0	0	0	0	0	က		0	0	0	0	0		-	0	0	0	0	0	-	0
	OC mass (t/ha)		4.8	4.3	5.0	10.0	5.7	2.3	5.6	4.7	3.9	4.5	9.6	4.1	1.8	5.6	5.3	3.9	4.0		8.9	2.8	2.4	1.3	1.3	1.5	12.4	4.7
	Source																											
Fine Earth	0C (wt%)		0.10	0.09	0.10	0.70	0.38	0.15	0.12	0.10	0.08	0.09	0.70	0.27	0.12	0.12	0.11	0.08	0.08		0.56	0.17	0.14	0.08	0.12	0.28	0.73	0.28
	Clay (wt%)		5	ω	8	2	2	2	с	5	8	8	2	2	2	с	5	7	9				2	2	с	7	2	2
	wt% of sample		100	100	100	97	98	100	100	100	100	100	97	66	100	100	100	100	100		100	66	66	98	62	16	66	66
ensity	Result		1.62	1.58	1.67	1.47	1.52	1.52	1.56	1.58	1.62	1.67	1.42	1.52	1.53	1.55	1.61	1.61	1.68		1.60	1.67	1.72	1.70	1.70	1.70	1.72	1.71
Bulk D	Method		core	core	COLE	COLE	COLE	core	COLE		core	core	COLE	estim	estim	estim	COLE	core										
oth	Lower		90	120	150	10	20	30	60	60	120	150	10	20	30	60	60	120	150		10	20	30	40	50	70	10	20
Del	Upper	ļ	60	06	120	0	10	20	30	60	60	120	0	10	20	30	60	90	120		0	10	20	30	40	50	0	10
	Sample		ш	ш	IJ	A	В	C	Ω	ш	ш	G	A	В	S	Ω	ш	ш	IJ		A	В	c	Ω	ш	ш	A	В
	Sample point		2	2	2	co	S	S	S	S	S	З	4	4	4	4	4	4	4			-	-		-		2	2
	Landuse						Π						Π	Π					Π		_							_
	Location		BA	Brookton	BR	BR	BR	BR	BR	BR	BR	BR																

als	C mass (t/ha)			3.6	10.0																				0.3	3.1	12.6	
se Minera	0C 0 (wt%)			0.33	0.33																				0.74	0.47	0.39	
Coar	wt% of sample		2	65	89	0		2	4	5	87	0	2	7	4	5	55	0		2	51	80	0		ŝ	=	71	0
ics	DC mass (t/ha)																						1.4	0.5	0.5			
arse Organ	0C ((wt%)																						4.52	15.4	14.0			
CO	wt% of sample	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	2	0	0	0	0	
	OC mass (t/ha)	2.2	1.7	1.2	1.3	12.4	5.1	1.9	1.1	1.2	0.8	11.1	4.8	2.4	1.1	1.3	1.5	7.6	3.5	2.7	3.7	2.1	8.1	3.6	2.2	4.5	2.2	7.9
l	Source									Ð						G												
Fine Earth	0C (wt%)	0.13	0.10	0.21	0.34	0.81	0.30	0.11	0.07	0.07	0.18	0.69	0.28	0.15	0.07	0.07	0.09	0.49	0.22	0.17	0.14	0.25	0.54	0.23	0.14	0.09	0.17	0.53
	Clay (wt%)	2	2	5	6	2	2	2	2	ŝ	7			2	-	ŝ	ŝ	2	-	-	-	4	-	-	-	-	2	2
l	wt% of sample	66	98	35	11	66	66	98	96	95	13	100	98	94	96	95	45	98	66	98	49	20	98	98	97	89	29	66
ensity	Result	1.71	1.70	1.65	1.70	1.55	1.71	1.74	1.70	1.79	1.80	1.62	1.75	1.73	1.70	1.89	1.80	1.58	1.60	1.62	1.83	1.70	1.53	1.61	1.62	1.90	1.80	1.50
Bulk De	Method	core	estim	core	estim	core	core	COLE	estim	core	estim	COLE	COLE	COLE	estim	core	estim	core	core	core	core	estim	core	COLE	core	core	estim	core
ų	Lower	30	40	50	70	10	20	30	40	50	70	10	20	30	40	50	20	10	20	30	60	85	10	20	30	60	85	10
Dept	Upper	20	30	40	50	0	10	20	30	40	50	0	10	20	30	40	50	0	10	20	30	60	0	10	20	30	60	0
	Sample	0	D	ш	ш	A	в	c	D	ш	ц	A	8	c	D	ш	ш	A	В	c	D	ш	A	В	c	D	ш	A
	Sample point	2	2	2	2	ŝ	ŝ	ç	ç	ŝ	ŝ	4	4	4	4	4	4						2	2	2	2	2	с
	Landuse		_	_	_	_		_	_	_	_	_	_	_	_	_	_	Π	Π									
	Location	BR	BR	BR	BR	BR	BR	BR	BR	BR	BR	BR	BR	BR	BR	BR	BR	BR	BR	BR	BR	BR	BR	BR	BR	BR	BR	BR

				Dep	th	Bulk De	ensity			Fine Earth			CC	barse Organ	nics	Coal	rse Minera	lls									
Location	Landuse	Sample point	Sample	Upper	Lower	Method	Result	wt% of sample	Clay (wt%)	0C (wt%)	Source	OC mass (t/ha)	wt% of sample	0C (wt%)	OC mass (t/ha)	wt% of sample	0C 0 (wt%)	C mass (t/ha)									
BR	П	ო	В	10	20	core	1.58	97	-	0.22		3.4	0			с											
BR	Π	ო	c	20	30	core	1.64	79	2	0.16		2.1	0			21											
BR		3	Q	30	60	core	1.88	30	2	0.36		6.0	0			70											
BR		с	ш	60	85	estim	1.90	13	ŝ	0.31		1.9	0			87											
BR		4	А	0	10	core	1.63	98		0.46		7.4	2			0											
BR		4	В	10	20	core	1.60	66		0.24		3.8	0														
BR		4	c	20	30	core	1.72	98		0.18		3.0	0			2											
BR		4	D	30	60	core	1.80	27	2	0.22		3.3	0			73											
BR		4	ш	60	85	estim	1.80	16	4	0.21		1.5	0			84											
BR	Π	4	ш	85	06	estim	1.80	24	9	0.20		0.4	0			76											
Mullewa																											
MU	_	-	A	0	10	core	1.67	96	~	0.55		8.8	0			4											
MU	_		В	10	20	core	1.67	96	7	0.29		4.6	0			4											
MU	_		c	20	30	core	1.71	94	7	0.17		2.7	0			9											
MU	_		D	30	45	core	1.75	83	7	0.12		2.6	0			17											
MU	_		ш	45	80	core	1.86	26	13	0.13		2.2	0			74											
MU	_	-	ш	80	100	core	1.75	67	=	0.06		1.4	0			33											
MU	_	2	A	0	10	core	1.60	95	10	0.47		7.1	-			4											
MU	_	2	В	10	20	core	1.64	95	7	0.33		5.1	0			5											
MU	_	2	C	20	30	core	1.72	94	12	0.18		2.9	0			9											
MU	_	2	D	30	45	core	1.72	86	12	0.12		2.6	0			14											
MU	_	2	ш	45	80	core	1.82	31	14	0.13		2.5	0			69											
MU		2	ш	80	100	core	1.72	42	21	0.08		1.1	0			58											
MU	_	c,	A	0	10	core	1.57	94	10	0.56		8.2	0	4.15	0.2	9	0.58	0.5									
MU	_	c,	В	10	20	core	1.64	94	10	0.37		5.7	0			9	0.30	0.3									
MU		ი	C	20	30	core	1.66	92	12	0.21		3.2	0			∞	0.13	0.2									
nerals	OC mass(t/ha)	1 0.4	4 6.2	6 1.1																							
------------	--	-------	-------	-------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	---
Coarse Mi	of OC ple (wt%	5 0.1	2 0.1	5 0.0	10	10	2	_	0	0	0	m	10	0	6	4	4	-	4	6	6	8	10	51	5	e	
	s wt% samp	41	72	55				21	72	70				10	76	9	7		7	10	76	78		7	7	÷-	
Janics	OC mass (t/ha)																										
coarse Org	0C (wt%)																										
0	wt% of sample	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0		0	0	0	
	OC mass (t/ha)	2.5	2.1	1.1	7.7	5.0	2.8	2.6	2.7	0.8	7.6	5.6	3.3	9.8	1.8	1.4	7.1	6.5	3.4	6.8	1.6	1.0	8.2	6.4	3.3	10.4	
	Source	G	G	G						e																	
Fine Earth	0C (wt%)	0.12	0.12	0.07	0.52	0.31	0.18	0.13	0.15	0.07	0.53	0.35	0.20	0.15	0.13	0.10	0.51	0.40	0.21	0.12	0.12	0.12	0.58	0.41	0.20	0.17	
	Clay (wt%)	12	13	13	6	1	1	7	13	12	7	8	6	6	7	10	8	8	6	6	12	7	∞	8	6	6	
	wt% of sample	85	28	45	95	95	93	79	28	30	97	97	95	06	24	36	96	98	96	81	24	22	65	96	96	87	
nsity	Result	1.65	1.77	1.74	1.56	1.69	1.68	1.69	1.86	1.84	1.47	1.66	1.73	1.81	1.97	1.95	1.45	1.67	1.71	1.77	1.89	1.98	1.50	1.64	1.72	1.78	I
Bulk De	Method	core	core	core	core	core	core	core	core	core	core	core	core	core	core	core	core	core	core	core	core	core	core	core	core	core	
ų	Lower	45	80	100	10	20	30	45	80	100	10	20	30	70	100	120	10	20	30	70	100	120	10	20	30	70	
Dept	Upper	30	45	80	0	10	20	30	45	80	0	10	20	30	70	100	0	10	20	30	70	100	0	10	20	30	
	Sample	D	ш	ш	A	В	S	D	ш	ц	A	в	S	D	ш	ц	A	в	c	D	ш	ц	A	в	S	D	
	Sample point	ę	က	ę	4	4	4	4	4	4	-	-					2	2	2	2	2	2	ę	ო	ę	e	
	Landuse			_	_						S	S	S	S	S	S	S	S	ა	ა	S	ა	S	S	S	S	
	Location	MU	MU	MU	MU	MU	MU	MU	MU	MU	MU	MU	MU	MU	MU	MU	MU	MU	MU	MU	MU	MU	MU	MU	MU	MU	

				Dep	oth	Bulk D	ensity			Fine Earth			00	arse Orgai	nics	Coar	'se Minera	lls
Location	Landuse	Sample	Sample	Upper	Lower	Method	Result	wt% of sample	Clay (wt%)	0C (wt%)	Source	OC mass (t/ha)	wt% of sample	0C (wt%)	OC mass (t/ha)	wt% of sample	0C 0 (wt%)	C mass (t/ha)
MU	S	4	A	0	10	core	1.48	96	7	0.50		7.1	0			с		
MU	S	4	В	10	20	core	1.72	97	7	0.45		7.4	0			ი		
MU	S	4	C	20	30	core	1.72	95	∞	0.27		4.4	0			5		
MU	S	4		30	70	core	1.86	62	6	0.13		5.9	0			38		
MU	S	4	ш	20	100	core	1.97	21	10	0.22		2.7	0			79		
MU	S	4	щ	100	120	estim	1.90	26	7	0.18		1.8	0			74		
MU	Π	-	A	0	10	core	1.52	97	6	0.89		13.1	2			-		
MU	Π	-	В	10	20	core	1.49	97	10	0.58		8.4	2			-		
MU	Π	-	C	20	30	core	1.53	97	÷	0.37		5.5	2					
MU	Π	-		30	55	core	1.60	97	13	0.22		8.6	-			2		
MU	Π	-	ш	55	85	core	1.80	93	13	0.12		6.0	0			7		
MU	Π	-	щ	85	95	core	1.95	40	14	0.20		1.5	0			60		
MU	Π	-	ъ	95	105	clod	1.88	32	14	0.17		1.0	0			68		
MU	Π	2	A	0	10	core	1.53	96	10	0.73		10.6	4			0		
MU	Π	2	в	10	20	core	1.53	97	7	0.56		8.3	ę			0		
MU		2	C	20	30	core	1.51	98	12	0.36		5.3				2		
MU		2		30	55	core	1.63	96	13	0.16		6.2				4		
MU		2	ш	55	85	core	1.71	06	13	0.11		5.1	0			10		
MU	Π	2	щ	85	95	core	1.78	35	15	0.16		1.0	0			65		
MU	Π	2	G	95	105	estim	1.80	23	16	0.14		0.6	0			77		
MU		ŝ	A	0	10	core	1.48	96	6	0.72		10.2	ę	6.21	2.9	-		
MU		3	В	10	20	core	1.49	97	10	0.44		6.3		7.71	1.5	2	09.0	0.1
MU		ო	ပ	20	30	core	1.51	97	7	0.30		4.4		12.9	1.2	2	0.51	0.2
MU	Π	ŝ	Ω	30	55	core	1.62	98	12	0.19		7.5	0	4.46	0.7	2	0.26	0.2
MU		ŝ	ш	55	85	core	1.66	88	13	0.10		4.4	0			12	0.10	0.6
MU		S	щ	85	65	core	1.84	41	14	0.14		1.0	0			59	0.10	1.1
MU		ო	IJ	95	105	clod	1.94	29	15	0.14		0.8	0			71	0.08	1.1

				Dep	th	Bulk De	ensity			Fine Earth			Co	arse Orgai	nics	Coan	se Miner	als
Location	Landuse	Sample	Sample	Upper	Lower	Method	Result	wt% of sample	Clay (wt%)	0C (wt%)	Source	OC mass (t/ha)	wt% of sample	0C (wt%)	OC mass (t/ha)	wt% of sample	0C 0 (wt%)	C mass (t/ha)
MU		4	A	0	10	core	1.43	98	7	0.80		11.2	2			0		
MU		4	Ξ	10	20	core	1.48	97	8	0.51		7.3	2					
MU		4	ပ	20	30	core	1.55	98	10	0.36		5.4				2		
MU		4	D	30	55	core	1.58	97	7	0.22		8.4	-			2		
MU		4	ш	55	85	core	1.71	92	12	0.14		9.9	0			œ		
MU		4	ш	85	95	core	1.74	22	14	0.17		0.6	0			78		
MU		4	IJ	95	105	estim	1.90	23	18	0.12		0.5	0			78		
Merredin																		
ME	_	-	A	0	10	core	1.53	96	13	0.90		13.2	2			2		
ME	_	-	Β	10	20	core	1.65	98	20	0.44	G	7.2	0			2		
ME	_	-	ပ	20	30	core	1.60	96	22	0.08		1.2	0			4		
ME			D	30	50	core	1.55	82	19	0.10		2.5	0			18		
ME		-	ш	50	80	core	1.55	83	14	0.08		3.0	0			17		
ME	_	-	ш	80	110	core	1.58	84	15	0.08		3.1	0			16		
ME			IJ	110	140	core	1.63	65	20	0.12		3.8	0			35		
ME		2	A	0	10	core	1.45	97	13	0.80		11.3	2					
ME		2	Β	10	20	core	1.49	98	19	0.44		6.4	0			2		
ME	_	2	C	20	30	core	1.52	97	22	0.22		3.2	0			က		
ME	_	2	D	30	50	core	1.53	96	25	0.14		4.1	0			4		
ME		2	ш	50	80	core	1.58	95	26	0.09		4.0	0			5		
ME		2	ш	80	110	core	1.58	94	26	0.07		3.1	0			9		
ME		2	G	110	140	core	1.55	85	25	0.14		5.4	0			15		
ME		с	A	0	10	core	1.56	98	12	0.73		11.1	-	6.91	0.6	2		
ME	_	c	Ξ	10	20	core	1.59	66	20	0.40		6.2	0			-		
ME	_	c	C	20	30	core	1.56	98	21	0.20		3.0	0			2		
ME	_	ę	Ω	30	50	core	1.54	97	23	0.12		3.5	0			က	0.22	0.2

als	C mass (t/ha)	0.4	0.2	0.3																								
se Miner	0C 0 (wt%)	0.09	0.08	0.05																								
Coan	wt% of sample	6	4	15	က	9	က	5	6	6	19	-	2	2	4	6	13	6	-	2	ນ	9	œ	12	6	2	°	4
nics	OC mass (t/ha)											0.9																
oarse Orga	0C (wt%)											9.00																
C	wt% of sample	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	OC mass (t/ha)	3.8	3.1	2.8	12.3	5.5	2.8	4.0	4.6	3.3	2.7	15.9	8.1	4.7	3.9	3.9	2.9	2.6	13.0	7.4	3.7	3.5	3.9	3.0	2.6	13.6	7.4	3.9
l	Source																											
Fine Earth	0C (wt%)	0.09	0.07	0.07	0.79	0.37	0.19	0.14	0.11	0.08	0.07	1.14	0.53	0.31	0.13	0.09	0.07	0.06	0.90	0.50	0.26	0.12	0.09	0.07	0.06	0.94	0.49	0.26
	Clay (wt%)	24	24	22	14	20	24	23	24	24	20	12	18	21	22	23	20	20	12	18	22	22	23	21	19	12	19	22
l	wt% of sample	91	96	85	97	94	97	95	91	91	81	66	98	98	96	91	87	91	98	98	95	94	92	88	91	97	97	96
ensity	Result	1.57	1.58	1.59	1.62	1.61	1.53	1.53	1.55	1.53	1.58	1.42	1.56	1.54	1.55	1.58	1.61	1.58	1.47	1.51	1.51	1.56	1.59	1.62	1.59	1.49	1.57	1.58
Bulk De	Method	core																										
th	Lower	80	110	140	10	20	30	50	80	110	140	10	20	30	50	80	110	140	10	20	30	50	80	110	140	10	20	30
Dep	Upper	50	80	110	0	10	20	30	50	80	110	0	10	20	30	50	80	110	0	10	20	30	50	80	110	0	10	20
l	Sample	ш	ш	G	A	В	c	Ω	ш	ш	сŋ	A	В	C	Ω	ш	ш	IJ	A	В	S	D	ш	ш	G	A	В	S
	Sample point	က	S	S	4	4	4	4	4	4	4		-		-				2	2	2	2	2	2	2	S	S	ę
	Landuse		_		_		_	_	_		_	လ	S	S	S	S	S	လ	လ	S	S	S	လ	လ	S	S	S	S
	Location	ME																										

inerals	; OC mass 6) (t/ha)															34 0.5	3 0.7	2 0.5	0.4								
Coarse M	of 00 ple (wt ⁹	5	0	9	4	2	4	4	5	6	6	4	-	4	c.	5 0.3	1 0.1	9 0.1	2 0.(e	9	e	5	2	e	6	
	s wt% sam			-	÷						-	÷													-	-	ļ
ganics	OC mas (t/ha)												1.1	0.8													
Coarse Or	0C (wt%)												4.33	6.11													
	wt% of sample	0	0	0	0	2	0	0	0	0	0	0	2		0	0	0	0	0		-		0	0	0	0	•
	OC mass (t/ha)	4.1	3.4	3.2	2.4	13.6	7.6	4.3	4.1	4.3	3.1	2.5	9.1	6.3	4.1	4.1	4.2	3.5	3.0	9.2	6.3	4.4	6.0	6.3	3.8	2.7	
	Source																										
Fine Earth	0C (wt%)	0.14	0.08	0.08	0.06	0.97	0.52	0.30	0.14	0.10	0.08	0.06	0.62	0.48	0.29	0.14	0.10	0.08	0.07	0.66	0.50	0.31	0.21	0.15	0.09	0.07	
	Clay (wt%)	22	23	21	19	12	17	21	21	24	23	22	15	19	21	22	23	23	20	14	20	22	23	27	26	25	:
	wt% of sample	95	06	84	86	96	96	96	95	91	81	86	97	95	97	95	89	91	88	96	93	97	95	88	87	81	
ensity	Result	1.55	1.57	1.57	1.59	1.46	1.52	1.51	1.55	1.57	1.62	1.60	1.50	1.38	1.48	1.55	1.60	1.59	1.63	1.45	1.36	1.49	1.52	1.59	1.62	1.62	
Bulk D	Method	core	core	core	core	core	core	core	core	core	core	core															
th	Lower	50	80	110	140	10	20	30	50	80	110	140	10	20	30	50	80	110	140	10	20	30	50	80	110	140	0.
Dep	Upper	30	50	80	110	0	10	20	30	50	80	110	0	10	20	30	50	80	110	0	10	20	30	50	80	110	¢
	Sample	D	ш	ц	G	A	в	0	Q	ш	ц	G	А	8	5	D	ш	ц	U	А	Θ	0	Q	ш	ц	G	
	Sample	S	S	ŝ	ო	4	4	4	4	4	4	4	-		-	-	-	-		2	2	2	2	2	2	2	c
	Landuse	ഗ	S	S	S	S	S	S	S	S	S	S				Π			Π								:
	Location	ME	ME	ME	ME	ME	ME	ME	ME	ME	ME	ME	Ļ														

				Dep	th	Bulk De	nsity			Fine Earth			CO	arse Orga	nics	Coar	'se Mineral	S
cation	Landuse	Sample point	Sample	Upper	Lower	Method	Result	wt% of sample	Clay (wt%)	0C (wt%)	Source	OC mass (t/ha)	wt% of sample	0C (wt%)	OC mass (t/ha)	wt% of sample	0C 0C (wt%)	mass (t/ha)
ш		ი	c	20	30	core	1.50	97	21	0.27		3.9				2		
ш		co	D	30	50	core	1.45	96	22	0.16		4.4	0			4		
ш		ŝ	ш	50	80	core	1.55	94	24	0.11		4.8	0			9		
ų		ę	ш	80	110	core	1.58	92	25	0.09		3.9	0			ω		
ΛE		S	G	110	140	COTE	1.64	86	23	0.08		3.4	0			14		
ΛE		4	A	0	10	core	1.51	97	14	0.61		8.9				2		
ΛE	Π	4	В	10	20	core	1.41	97	19	0.51		7.0				2		
ME	Π	4	C	20	30	COLE	1.49	97	22	0.28		4.0	0			ო		
ME	Π	4	Ω	30	50	core	1.50	96	23	0.18		5.2	0			4		
ME	Π	4	ш	50	80	core	1.53	94	23	0.13		5.6	0			9		
ME	Π	4	щ	80	110	core	1.64	82	23	0.10		4.0	0			18		
ME		4	IJ	110	140	core	1.64	81	21	0.10		4.0	0			19		
Vewdegate	(deep)																	
٩D	-	-	A	0	10	COLE	1.64	96	ŝ	0.91		14.3				ო		
DN			В	10	20	core	1.78	60	ŝ	0.42		4.5	0			40		
DN			C	20	30	core	1.90	30	4	0.27		1.5	0			71		
DN		-	C1	30	40	core	1.90	30	4	0.19		1.1	0			71		
٩D	-	-	Ω	40	60	core	1.92	98	43	0.26		9.6	0			2		
٩D	_	-	ш	60	06	core	1.77	96	38	0.06		2.9	0			4		
٩D	_	2	A	0	10	core	1.63	97	2	0.79		12.5		21.8	1.8	ო		
DN	_	2	В	10	20	COTE	1.79	69	2	0.28		3.5	0			31	0.12	0.7
ND	_	2	C	20	30	core	1.88	33	2	0.24		1.5	0			67	0.09	1.1
D		2	C1	30	40	COLE	1.88	34	4	0.18		1.2	0	26.6	0.5	99	0.09	1.1
DN		2	Ω	40	60	core	1.85	97	43	0.18		6.4	0	16.8	0.0	с	0.14	0.1
DN		2	ш	60	90	COTE	1.73	98	36	0.09		4.4	0	30.6	0.0	2	0.09	0.1
٩D		ო	A	0	10	core	1.58	95	с	0.87		13.0	0			5		

nerals	oc mass () (t/ha)																											
arse Mi	00 (wt%																											
Co	wt% of sample	46	68	67	28	8	2	16	64	61	32	4	ŝ	31	62	43	40	46	ŝ	15	48	17	24	35	2	20	48	9
anics	OC mass (t/ha)																											
oarse Org	0C (wt%)																											
5	wt% of sample	0	0	0	-	0		0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0		0	0	0
	OC mass (t/ha)	3.2	1.6	1.6	12.7	3.3	12.4	4.9	1.4	1.0	4.4	4.0	12.3	4.3	1.5	4.3	2.5	2.0	11.8	3.6	1.7	5.0	2.7	2.1	11.4	3.6	1.6	5.6
	Source																											
Fine Earth	0C (wt%)	0.35	0.27	0.27	0.46	0.07	0.82	0.33	0.21	0.14	0.17	0.07	0.76	0.36	0.21	0.13	0.08	0.07	0.76	0.24	0.18	0.12	0.07	0.06	0.67	0.26	0.16	0.12
	Clay (wt%)	c,	4	4	34	32	co	ი	с	4	38	30	ę	с	4	32	28	29	ę	ę	co	35	32	22	ი	2	2	37
	wt% of sample	54	32	33	71	92	97	84	36	39	68	96	96	69	38	57	61	54	97	85	52	83	76	65	97	80	52	94
Insity	Result	1.71	1.85	1.85	1.93	1.78	1.56	1.75	1.82	1.82	1.95	2.06	1.68	1.73	1.87	1.95	1.76	1.80	1.61	1.76	1.84	1.71	1.75	1.84	1.75	1.75	1.91	1.68
Bulk De	Method	core	COLE	core	core	core	COLE	core																				
÷	Lower	20	30	40	60	06	10	20	30	40	60	06	10	20	30	60	06	120	10	20	30	60	06	120	10	20	30	60
Dept	Upper	10	20	30	40	60	0	10	20	30	40	60	0	10	20	30	60	06	0	10	20	30	60	06	0	10	20	30
	Sample	В	S	C1	D	ш	A	в	S	5	D	ш	A	В	S	D	ш	щ	A	в	S	D	ш	ш	A	В	S	D
	Sample point	S	co	co	co	3	4	4	4	4	4	4							2	2	2	2	2	2	ę	ę	ę	с
	Landuse		_	_			_				_		S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S
	Location	DN	ND	ND	ND	DN	ND	DN	ND																			

				~~U	46	Dulli D				Cine Couth			č	Cond Cond	nico	000	Towing on	
				neh			cilsity						3	uarse urya	3	0.03		als
Location	Landuse	Sample point	Sample	Upper	Lower	Method	Result	wt% of sample	Clay (wt%)	0C (wt%)	Source	OC mass (t/ha)	wt% of sample	0C (wt%)	OC mass (t/ha)	wt% of sample	0C 0 (wt%)	C mass (t/ha)
ND	S	ი	ш	60	06	core	1.81	64	26	0.07		2.3	0			36		
ND	S	S	ш	06	120	core	1.74	52	28	0.07		1.8	0			48		
ND	S	4	A	0	10	core	1.62	97	ი	0.83		12.9		19.3	3.4	2		
ND	S	4	В	10	20	core	1.67	89	S	0.54		8.0	0			÷	0.28	0.5
ND	S	4	C	20	30	core	1.91	45	S	0.28		2.4	0			55	0.11	1.1
ND	S	4		30	60	core	1.81	81	38	0.20		8.7	0			19	0.14	1.4
ND	S	4	ш	60	06	core	1.51	81	45	0.08		2.9	0			19	0.05	0.4
ND	S	4	щ	06	120	core	1.75	71	37	0.08		2.9	0			29	0.07	1.0
ND			A	0	10	core	1.50	93	ŝ	0.85		11.9	0	23.9	1.4	7		
ND		-	В	10	20	core	1.57	99	3	0.58		6.0		24.9	2.0	33	0.14	0.7
ND			C	20	30	core	1.78	40	2	0.29		2.0	0	26.2	1.4	60	0.13	1.4
DN	Π		Ω	30	60	core	1.62	65	32	0.19		6.1	2	30.2	25.0	34	0.15	2.4
DN	Π	-	ш	60	06	core	1.50	60	26	0.06		1.6	0			40	0.04	0.7
ND		2	A	0	10	core	1.48	98	3	0.58		8.3	0			2		
ND		2	В	10	20	core	1.59	85	5	0.32		4.3	0			15		
ND		2	C	20	30	core	1.71	58	2	0.21		2.1	0			42		
ND		2		30	60	core	1.76	72	35	0.16		6.0	0			28		
ND	Π	2	ш	60	06	core	1.58	81	40	0.08		3.0	0			19		
ND		с	A	0	10	core	1.11	96	ŝ	0.63		6.7				4		
ND		З	В	10	20	core	1.47	88	3	0.42		5.4	0			12		
ND		З	ပ	20	30	estim	1.75	51	2	0.26		2.3	0			49		
ND		3 C	Ω	30	60	core	1.63	82	34	0.17		6.7	0			18		
ND		ი	ш	60	06	core	1.67	67	28	0.08		2.6	0			33		
ND		4	A	0	10	core	1.30	96	3	1.39		17.4				ო		
ND		4	В	10	20	core	1.54	88	2	0.43		5.8				.		
ND		4	C	20	30	estim	1.75	47	2	0.24		2.0	0			53		
ND		4	D	30	60	core	1.62	69	33	0.11		3.6	0			31		

rals	OC mass (t/ha)																					0.4	0.1	0.5	0.2				
rse Mine	0C ((wt%)																					0.12	0.20	0.10	0.09				
Coa	wt% of sample	31	<u>-</u>			-	28	7	5	15	-	14		с	12		5	с		14	2	19	с	6	4	2	ŝ	,	
nics	OC mass (t/ha)																				2.2					3.2	1.0		0.0
oarse Orga	0C (wt%)																				23.1					22.1	28.0		33.9
CC	wt% of sample	-	D			-	0	0	0	0	-	0	0	0	0		0	0	0	0		0	0	0	0		0		0
	OC mass (t/ha)	10	۲.4			10.9	3.4	6.8	12.9	2.7	11.5	4.8	8.8	9.7	2.4	10.1	3.1	5.5	4.2	2.8	9.6	3.6	6.0	5.3	2.0	12.3	4.3		5.6
	Source																												
ine Earth	0C (wt%)	0.07	0.07			0.67	0.27	0.41	0.25	0.06	0.74	0.31	0.49	0.19	0.05	0.63	0.19	0.31	0.08	0.06	0.62	0.25	0.34	0.11	0.04	0.87	0.26		0.31
	Clay (wt%)	70	71			с	2	27	37	27	ŝ	ŝ	35	52	31	2	2	32	36	34	ŝ	2	28	35	26	ŝ	2		33
	wt% of sample	ęo	60			66	72	94	95	85	66	86	100	97	88	98	95	97	66	87	97	81	97	91	96	97	97		66
nsity	Result	1 60	1.03			1.66	1.75	1.80	1.80	1.85	1.58	1.81	1.80	1.80	1.85	1.64	1.69	1.80	1.80	1.85	1.59	1.76	1.80	1.80	1.85	1.46	1.72		1.80
Bulk De	Method	COTO	COLE			core	core	estim	estim	estim	core	core	estim	estim	estim	core	core	estim	estim	estim	core	core	estim	estim	estim	core	core		estim
-	Lower	UD	30			10	20	30	09	06	10	20	30	60	06	10	20	30	60	06	10	20	30	60	06	10	20		30
Depti	Upper	60	00			0	10	20	30	60	0	10	20	30	60	0	10	20	30	60	0	10	20	30	60	0	10		20
	Sample	ц	L			A	в	ပ	D	ш	A	в	ပ	Ω	ш	A	в	ပ	Ω	ш	A	в	C	Ω	ш	A	в	•	<u>ں</u>
	Sample point	-	t						-		2	2	2	2	2	ŝ	ŝ	ŝ	ŝ	ŝ	4	4	4	4	4				•
	Landuse	=	D		silaliuw)	_	_	_	_			_	_	_		_		_	_	_		_		_	_	S	S	,	S
	Location		ND	Mawdarata (Newuegate (NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		NS

erals	OC mass (t/ha)																											
rse Min	0C (wt%)																											
Coal	wt% of sample	10		4		ę	23		S		0	5		2	0	7	20	0		0		8	0		0	0	9	
nics	OC mass (t/ha)																											
oarse Orga	0C (wt%)																											
0	wt% of sample	0	-	0	0	0	0		0	0	0	0		0	0	0	0			0	0	0	-			0	0	2
	OC mass (t/ha)	2.3	11.2	3.0	6.0	3.0	2.0	13.5	3.9	6.0	8.2	2.4	15.1	4.9	7.2	7.0	2.0	14.1	6.7	8.0	4.2	3.9	15.4	10.1	9.9	9.9	5.0	22.3
	Source																											
Fine Earth	0C (wt%)	0.05	0.70	0.19	0.34	0.06	0.05	0.84	0.24	0.34	0.16	0.05	0.94	0.30	0.40	0.14	0.05	0.91	0.41	0.44	0.08	0.08	1.01	0.54	0.55	0.18	0.10	1.50
	Clay (wt%)	31	ę	2	30	39	36	ę	2	27	46	39	с	с	35	40	43	co	ę	30	42	37	c,	2	24	40	41	4
	wt% of sample	06	66	96	66	97	78	66	67	66	100	95	98	98	100	93	80	66	98	100	66	92	66	66	100	100	94	97
ensity	Result	1.76	1.63	1.67	1.81	1.74	1.73	1.64	1.68	1.80	1.76	1.73	1.64	1.67	1.80	1.83	1.77	1.57	1.68	1.80	1.80	1.85	1.55	1.90	1.80	1.80	1.85	1.52
Bulk D	Method	core	estim	core	core	core	core	estim	core	core	core	core	estim	estim	estim	core	core	estim	estim	estim	core							
pth	Lower	06	10	20	30	60	06	10	20	30	60	06	10	20	30	60	06	10	20	30	60	06	10	20	30	60	06	10
De	Upper	60	0	10	20	30	60	0	10	20	30	60	0	10	20	30	60	0	10	20	30	60	0	10	20	30	60	0
	Sample	ш	А	в	C	D	ш	А	в	C	D	ш	А	в	C	D	ш	A	в	C	D	ш	А	В	C	D	ш	A
	Sample	-	2	2	2	2	2	ę	ŝ	ŝ	ŝ	ę	4	4	4	4	4						2	2	2	2	2	ę
	Landuse	S	ა	S	S	ა	S	ა	ა	ა	ა	ა	ა	S	ა	ა	ა											
	Location	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS								

ocation	Landuse	Sample	Sample	Dep Upper	th Lower	Bulk D Method	ensity Result	wt% of	Clay	Fine Earth OC	Source	OC mass	C. wt% of	oarse Orga OC	anics OC mass	Coar wt% of	se Miner 0C 0	als C mass
		point						sample	(wt%)	(wt%)		(t/ha)	sample	(wt%)	(t/ha)	sample	(wt%)	(t/ha)
		4	В	10	20	core	1.36	93	31	1.05		13.3	0			7	0.33	0.3
	_	4	0	20	30	core	1.37	81	37	0.71		7.9	0			19	0.22	0.6
		4	D	30	20	core	1.50	80	43	0.14		6.6	0			20	0.15	1.8
	_	4	ш	20	100	COLE	1.50	06	57	0.07		2.7	0			10	0.09	0.4
	S	-	A	0	10	COLE	1.33	66	17	1.40		18.5	0			0		
	S	-	Ξ	10	20	COLE	1.31	98	49	0.71		9.1	0			2		
	S	-	ပ	20	30	core	1.43	78	50	0.52		5.8	0			22		
	S	-	D	30	70	core	1.52	70	40	0.24		10.1	0			30		
	S	-	ш	70	100	core	1.65	73	44	0.10		3.6	0			27		
	S	2	A	0	10	core	1.43	100	5	0.96		13.8	0	21.7	0.9	0		
	S	2	Ξ	10	20	core	1.77	100	22	0.44		7.7	0			0		
	S	2	ပ	20	30	core	1.71	100	38	0.18		3.1	0			0		
	S	2	D	30	70	core	1.65	70	31	0.10		4.7	0			30		
	S	2	ш	20	100	core	1.67	75	45	0.06		2.1	0			25		
	S	ი	A	0	10	core	1.51	100	7	1.28		19.2	0			0		
	S	3	Ξ	10	20	COLE	1.51	98	44	0.59		8.7	0			2		
	S	co	S	20	30	core	1.51	80	49	0.32		3.9	0			20		
	S	S	D	30	20	core	1.55	87	57	0.07		3.8	0			13		
	S	с	ш	70	100	core	1.52	86	62	0.07		2.9	0			14		
	S	4	A	0	10	core	1.55	100	10	1.36		21.0	0			0		
	S	4	в	10	20	core	1.39	98	43	0.59		8.1	0			2		
	S	4	ပ	20	30	core	1.47	84	52	0.38		4.7	0			16		
	S	4	D	30	20	core	1.49	79	49	0.20		9.5	0			22		
	S	4	ш	20	100	core	1.49	85	67	0.10		3.7	0			15		
		-	A	0	10	COLE	1.42	100	œ	1.24		17.5	0			0		
		-	Ξ	10	20	core	1.68	98	38	0.68		11.2	0			2		
		-	S	20	30	core	1.56	79	54	0.44		5.4	0			21		

		l	Dep	th	Bulk De	nsity	l		Fine Earth			0	oarse Orga	nics	Coal	rse Miner	als
T	use Sample point	Sample	Upper	Lower	Method	Result	wt% of sample	Clay (wt%)	0C (wt%)	Source	OC mass (t/ha)	wt% of sample	0C (wt%)	OC mass (t/ha)	wt% of sample	0C 0 (wt%)	C mass (t/ha)
		D	30	70	core	1.47	63	46	0.18		6.6	0			37		
	-	ш	20	100	COLE	1.54	76	55	0.11		3.9	0			24		
	2	A	0	10	COLE	1.63	66	8	1.08		17.5		21.8	4.3	0		
\supset	2	В	10	20	core	1.59	66	40	0.64		10.1	0	29.0	1.8	0	0.24	0.0
\supset	2	ပ	20	30	core	1.54	94	49	0.41		6.0	0			9	0.23	0.2
\supset	2	D	30	20	core	1.66	50	47	0.13		4.2	0			50	0.16	5.4
\square	2	ш	70	100	core	1.54	85	51	0.07		2.8	0			15	0.11	0.8
\supset	က	A	0	10	core	1.53	100	9	1.20		18.2				0		
\supset	c	В	10	20	core	1.63	66	23	0.88		14.1				0		
\supset	с С	c	20	30	core	1.52	96	49	0.41		6.0	2			2		
\supset	က	D	30	20	core	1.67	59	49	0.20		7.9	0			41		
	က	ш	20	100	COLE	1.56	70	54	0.10		3.2	0			30		
\supset	4	A	0	10	core	1.46	66	5	1.08		15.5				0		
\supset	4	В	10	20	COLE	1.36	100	27	0.65		8.8	0			0		
\supset	4	S	20	30	core	1.37	96	51	0.41		5.4				4		
\supset	4	D	30	20	COLE	1.44	52	47	0.19		5.6	0			49		
\supset	4	ш	70	100	core	1.57	89	56	0.12		5.1	0			÷		
		A	0	10	core	1.50	100	2	0.94		14.0		17.6	1.3	0		
		В	10	20	core	1.63	100	ŝ	0.35		5.7	0			0		
_		ပ	20	30	core	1.69	66	2	0.17		2.8	0			-	0.26	0.0
_		D	30	40	core	1.62	22	ŝ	0.23		0.8	0			78	0.06	0.7
_		ш	40	20	COLE	1.71	83	47	0.16		6.9	0			17	0.18	1.6
		ш	20	100	estim	1.80	80	40	0.08		3.5	0			20	0.07	0.8
_	2	A	0	10	COLE	1.62	100		0.75		12.1				0		
	2	В	10	20	core	1.68	100	2	0.31		5.2	0			0		

e Minerals	0C 0C mass (wt%) (t/ha)																											
Coars	wt% of sample	4	72	30	14	0	0		73	15	23	0	0	0	6	32	17	0	0	2	5	80	28	0	0	7	10	67
nics	OC mass (t/ha)																	3.1										
Coarse Orga	0C (wt%)																	29.6										
	wt% of sample	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0		0	0	0	0
	OC mass (t/ha)	3.0	1.0	0.0	4.4	14.5	5.5	2.7	0.8	8.6	4.1	13.8	5.6	2.3	1.7	3.1	2.6	13.9	6.4	3.1	3.4	2.4	5.4	15.8	5.8	3.3	3.2	2.1
	Source																				G	ш	ш				G	
Fine Earth	0C (wt%)	0.18	0.20	0.26	0.10	0.93	0.33	0.16	0.18	0.20	0.10	0.86	0.34	0.14	0.12	0.09	0.06	0.94	0.39	0.19	0.20	0.34	0.14	1.00	0.36	0.21	0.20	0.18
	Clay (wt%)	2	°	40	45	2	2	2	S	50	40	2	2	2	ŝ	45	49	2	2	2	2	4	45	2	ŝ	ŝ	ŝ	ç
	wt% of sample	96	28	70	86	100	100	100	27	85	78	100	100	100	91	68	83	66	100	98	95	20	72	66	100	93	06	33
ensity	Result	1.71	1.72	1.65	1.70	1.56	1.67	1.69	1.68	1.71	1.80	1.61	1.64	1.64	1.60	1.75	1.80	1.49	1.64	1.68	1.77	1.80	1.80	1.59	1.62	1.70	1.80	1.80
Bulk D	Method	core	core	core	estim	core	core	core	core	core	estim	core	core	core	core	core	estim	core	core	core	core	estim	estim	core	core	core	core	estim
th	Lower	30	40	70	100	10	20	30	40	70	100	10	20	30	40	70	100	10	20	30	40	60	06	10	20	30	40	60
Dep	Upper	20	30	40	70	0	10	20	30	40	70	0	10	20	30	40	70	0	10	20	30	40	60	0	10	20	30	40
	Sample	ပ	D	ш	ш	A	В	S	Ω	ш	ш	A	В	S	D	ш	ш	A	В	S	D	ш	ш	A	В	S	Ω	ш
	Sample point	2	2	2	2	ę	S	S	S	ę	с	4	4	4	4	4	4		-					2	2	2	2	2
	Landuse	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	S	S	S	S	S	S	S	S	S	S	S
	Location	CO	CO	CO	CO	CO	CO	CO	CO	CO	CO	CO	CO	CO	CO	CO	CO	CO	CO	CO	CO	CO	CO	CO	CO	CO	CO	00

.....

s	t mass (t/ha)																	0.8	1.5	1.8								
e Minera	0C 0C (wt%)																	0.94	0.13	0.27								
Coars	wt% of sample	23	0	0	-	5	77	17	0	0	17	25	80	18	0	0	0	2	68	13	0	0	0	2	69	16	0	0
nics	OC mass (t/ha)														3.4	4.1	1.7	0.5										
oarse Orga	0C (wt%)														18.7	30.0	28.1	14.0										
CC	wt% of sample	0	0	0	0	0	0	0		0	0	0	0	0	-	-	0	0	0	0	-		0	0	0	0	0	0
	OC mass (t/ha)	3.7	11.7	5.5	2.6	3.3	2.2	14.6	14.6	5.7	2.8	2.7	2.0	8.3	10.8	6.7	3.6	3.8	1.0	9.3	9.0	6.2	3.2	5.7	1.2	6.9	8.6	8.0
	Source					G						e						ш	ш	ш								
Fine Earth	0C (wt%)	0.09	0.77	0.34	0.16	0.20	0.26	0.33	0.99	0.36	0.20	0.20	0.32	0.20	0.84	0.50	0.24	0.10	0.19	0.21	0.62	0.40	0.21	0.14	0.24	0.16	0.59	0.53
	Clay (wt%)	39	2	2	2	2	9	44				2	5	51	2	2	2	4	5	41	2	2	2	4	9	41	2	2
	wt% of sample	77	100	100	66	95	24	83	100	100	84	75	20	82	98	66	66	98	32	87	66	100	100	98	31	84	100	100
ensity	Result	1.80	1.53	1.62	1.62	1.73	1.80	1.80	1.49	1.59	1.68	1.80	1.57	1.70	1.31	1.37	1.52	1.54	1.74	1.72	1.46	1.57	1.51	1.66	1.61	1.77	1.47	1.51
Bulk De	Method	estim	core	core	COLE	core	estim	estim	core	core	core	COLE	COLE	estim	core	COLE	core	COLE	core	core								
ч	Lower	90	10	20	30	40	60	90	10	20	30	40	60	90	10	20	30	55	65	95	10	20	30	55	65	95	10	20
Dept	Upper	60	0	10	20	30	40	60	0	10	20	30	40	60	0	10	20	30	55	65	0	10	20	30	55	65	0	10
	Sample	ш	A	В	C	D	ш	ш	A	В	c	D	ш	ш	A	В	C	D	ш	ш	A	в	C	D	ш	ш	A	В
	Sample point	2	ŝ	ŝ	S	ŝ	ŝ	ç	4	4	4	4	4	4	-	-	-	-	-	-	2	2	2	2	2	2	ŝ	ĉ
	Landuse	လ	S	S	လ	လ	S	S	S	လ	လ	S	လ	S	Л				Π			Π	Л	Л	Π		Π	Π
	Location	CO	CO	CO	CO	CO	CO	CO	CO	CO	CO	CO	CO	CO	CO	CO	CO	CO	CO	CO	CO	CO	CO	CO	CO	CO	CO	CO

'se Minerals	0C 0C mass (wt%) (t/ha)										
Coal	wt% of sample	0	က	60	19	0	0	0	-	71	12
anics	OC mass (t/ha)										
oarse Org	0C (wt%)										
	wt% of sample	0	0	0	0	0	0	0	0	0	0
	OC mass (t/ha)	3.9	4.7	1.3	6.6	9.4	6.4	4.4	5.8	1.4	7.0
	Source										
Fine Earth	0C (wt%)	0.25	0.12	0.18	0.15	0.63	0.42	0.28	0.15	0.25	0.16
	Clay (wt%)	2	4	4	39	2	2	2	с	5	44
	wt% of sample	100	97	40	81	100	100	100	66	30	88
ensity	Result	1.58	1.62	1.80	1.83	1.51	1.53	1.57	1.58	1.85	1.69
Bulk D	Method	COLE	core	core	core	core	COLE	core	core	core	core
th	Lower	30	55	65	92	10	20	30	55	65	95
Dep	Upper	20	30	55	65	0	10	20	30	55	65
	Sample	C	D	ш	ш	A	8	S	D	ш	ш
	Sample	က	S	ę	c	4	4	4	4	4	4
	Landuse										
	Location	CO									

APPENDIX 3

Basic Chemistry of Fractions

LEGEND

AI	Aluminum
Al ₂ O ₃	Aluminum Oxide
CaCl ₂	Calcium Chloride
CaCO ₃	Calcium Carbonate
ECe	Electrical Conductivity of Saturation Extract
Fe	Iron
Fe ₂ O ₃	Iron Oxide
К	Potassium
LD	Lower Depth
Locat	Location
Ν	Nitrogen
Р	Phosphorus
ppm	Parts per million
Rep	Replicate
Samp	Sample
UD	Upper Depth

TABLE OF CONTENTS

	Page No.
Northampton	117
Badgingarra	118
Brookton	119
Mullewa	119
Merredin	120
Newdegate (deep)	121
Newdegate (shallow)	122
Wittenoom Hills	122
Condingup	123

	Moisture (%) 2)		0.14	0.12	0.06	0.11	0.16	0.14	0.12	0.17	0.12	0.04	0.04	0.04	0.09	0.11	0.09	0.05	0.06	0.04	0.02	0	0.22
	рН (1:5) (CaCl ₂		5	4.6	4.4	4.5	4.8	5	5.3	5.3	6.2	5.2	5.2	5.6	5.5	5.5	4.7	4.9	4.8	4.9	5.3	5.9	5.6
l	CaCO ₃ pH (wt%) (1:5) (H ₂ 0)		5.9	5.7	5.5	5.6	5.9	5.8	5.9	6.3	6.2	6.3	6.2	6.6	6.5	6.6	6.1	5.8	5.6	5.4	5.9	6.9	6.6
	ECe (mS/m)		5	2	-	-	-	2	2	ŝ	2	-	-	-	-	-	ŝ	ŝ	ŝ	2	2	-	2
	AI (1:5) (CaCl ₂ (ppm)		-	$\overline{\nabla}$	$\overline{\nabla}$	$\overline{\nabla}$	-	$\overline{\nabla}$									$\overline{\nabla}$	$\overline{\nabla}$	-	$\overline{\nabla}$			
	AI ₂ 0 ₃ (%)		0.05	0.08	0.09	0.11	0.18	0.2	0.21	0.04	0.05	0.05	0.08	0.1	0.2	0.23	0.04	0.05	0.04	0.04	0.06	0.08	0.27
	AI total (%)		0.74	0.92	1.24	1.62	1.99	2.1	2.16	0.39	0.44	0.38	0.66	0.73	1.52	1.61	0.33	0.44	0.38	0.41	0.52	0.77	2.49
	Fe ₂ 0 ₃ (%)		0.29	0.48	0.55	0.71	1.06	1.2	1.26	0.21	0.27	0.28	0.42	0.52	1.04	1.21	0.2	0.28	0.24	0.22	0.3	0.45	1.48
	Fe total (%)		0.7	1.01	1.03	1.31	1.54	1.54	1.57	0.47	0.48	0.42	0.71	0.83	1.29	. .	0.4	0.47	0.45	0.46	0.44	0.59	1.49
	K total (ppm)		260	250	270	370	440	460	520	76	61	75	180	260	270	250	220	280	160	220	250	250	440
	P total (ppm)		59	31	18	20	22	22	19	35	20	18	17	18	24	18	14	12	15	14	13	18	24
arth	N total (%)		.055	0.022	0.013	0.011	0.01	.007	0.005	0.047	0.016	0.007	0.005	0.005	.005	0.005	0.23	0.014	.009	.005	.005	.005	0.008
Fine E	wt% of sample		66) 66	100 () 66	100	100 (> 66) 66	100 (100 (100 <	100 <	100 (100 (96 (97 () 66	100 (100 (100 (100 (
	AI total (%)					3.4			1.93														
	Fe total (%)					2.14			1.38														
	K total (ppm)					1300			500														
erals	P total (ppm)					42			17														
se Min	N total (%)					0.023			<0.005														
Coar	wt% of sample		0	0	0		0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0
lics	P total (ppm)		720	93						420	140						44	31	41	34			
e Organ	N total (%)		0.818	0.126						0.529	0.164						0.166	0.093	0.147	0.099			
Coarse	wt% of sample		1	-	0	0	0	0	0	2 (0	0	0	0	0	0	4 (3	-	0	0	0	0
	9		10	20	30	50	80	110	140	10	20	30	50	80	110	140	10	20	30	50	80	110	140
	3		0	10	20	30	50	80	110	0	10	20	30	50	80	110	0	10	20	30	50	80	110
	Samp		A	в	c	Ω	ш	щ	G	A	в	ပ	Ω	ш	щ	5	A	в	c	Ω	ш	ш	G
	e Rep		4	4	4	4	4	4	4	-	-	-	-	-	-	-	2	2	2	2	2	2	2
	Landuse	mpton	_	_	_	_	_	_	_	S	S	S	S	S	S	S							
	Locat	Northai	HN	HN	HN	HN	HN	HN	HN	HN	HN	HN	HN	HN	HN	HN	HN	HN	HN	HN	HN	HN	HN

						ö	oarse Or	ganics	(0)	Coarse	Mine	rals				Fine Ear	th												_
Locat	Landu	ise Re	p San	D E		san	% of N nple tot (%	e) br	P v ntal s pm)	ample 1	N total (%) (P total ppm)	K total (ppm)	Fe A total to (%) (%	N wi Ital sa (6)	% of mple to ('	N tal tr %) (p	P otal t pm) (p	pm)	Fe F total (%)	.e ₂ 03 (%) t	Al / total (%)	41 ₂ 03 (%) (7 (Cá (P	AI EC 1:5) (mS aCl ₂) pm)	e CaCO ₃ /m) (wt%)	pH (1:5) (H ₂ 0)	pH N (1:5) (CaCl ₂)	loistur (%)	
Badgin	jarra																												
BA	_	2	A		0 1() 2	0.39	3 47	02	0					5	18 0.C	34	40	170 (0.27	0.05	0.2	0.02	7		6.1	5.2	0.1	
BA		2	Β	10	0 21	0 0				0					1	0.0 OC	1	22	160	0.37	0.06 (0.21	0.02	-		5.7	4.7	0	_
BA		2	C	2(0 31	0	0.17	4 11	10	0					1(0.0 O.C	90	24 2	30 (0.33	0.04 (0.19	0.01	-		5.6	4.7	0	_
BA	_	2	D	3(0 51	0				0					1).0> OC	005	25 2	000).32	0.05	0.2	0.01	-		5.3	4.6	0.1	
BA	_	2	ш	5(0 80	0 0				0	0.02	50	400	2.68 2.2	28 1()0> 0C	005	28	240 (0.42	0.16 (0.31	0.03	-		5.4	4.6	0.1	_
BA	_	2	ш	8(0 11(0				3 0	1.011	31	600	2.72 2.4	44 9	17 <0.I	005	22 2	280 ().53	0.22 (0.55	0.06	-		9	5	0.1	
BA		2	G	11(0 150	0				10 0	1.007	25	1000	2.38 4.8	83 9	0 <0.1	005	21	340 (0.48	0.18 (0.59	0.04	-		6.2	5.4	0.1	_
BA		2	Ξ	15(0 17	0				21 <(0.005	22	800	1.85 4.7	76 7	9 <0.	305	13 4	t20 (0.79	0.52	2.8	0.1	-		6.2	5.6	0.3	_
BA	S	2	A		0 11) 2	0.44	5 27	20	0					6	18 0.C	28	37 7	80	0.26	0.05 (0.35	0.02			9	2	0.2	_
BA	S	2	В	10	0 21	1	0.13	3 11	10	0					7	0.0 O.C	1	18	180 ().33	0.05 (0.29	0.01	-		5.6	4.6	0.1	
BA	S	2	C	2(0 31	0				0					1)0> 0C	305	18	240 (0.31	0.17 (0.32	0.05	-		5.6	4.7	0.1	_
BA	S	2	D	3(0 51	0				0					7).0> OC	005	21 2) 003).32	0.08 (0.36	0.02	-		9	5	0.1	
BA	S	2	ш	5(0 8	0				0					1)0 <0.	005	18	300	0.42	0.19 (0.85	0.04			6.1	5.1	0.2	_
BA	S	2	Ŀ	8(0 111	0				0					1)0 <0.	005	16	380 (0.55	0.33	1.6	0.07			6.3	5.3	0.1	
BA	S	2	G	11(0 14	0				4					6	16 O.C	07	20	350 (0.54	0.47	1.92	0.09			6.4	5.6	0.2	_
BA	S	2	Η	14(0 16	0				00					6	12 0.0	05	16	320 (0.53	0.42	1.95	0.09			6.5	5.8	0.3	_
BA		-	A		0 1(3	0.21	5 5	50	0					5	17 0.1	33	16 2	250 (0.27	0.12 (0.48	0.03			5.8	4.6	0.1	
BA		-	Β	1	0 21	1	0.20	1	39	0					9	9 0.0	17 <	10	80	0.26	0.1 (0.38	0.02	-		6.2	2	0.1	_
BA		-	C	2(0 31	0	0.22		38	0					1	0.0 OC	60	10	80	0.25	0.12 (0.39	0.02	-		6.3	5.2	0	_
BA		-	D	3(0 61	1				0					9	9 0.0	90	12 2	250	0.3	0.17 (0.54	0.03	-		6.5	5.6	0	_
BA		-	ш	6(0	0				0					1	0.0 OC	05	12 2) 023	0.41	0.34 (0.94	0.06	-		6.6	5.6	0	_
BA		-	L	96	0 120	0 0				0					1(0.0 O.C	90	13	320 (0.51	0.44	1.18	0.07	-		6.8	5.9	0.1	
BA		-	5	12(0 151	0				0					1)0 <0.)05 <	10	30 (0.43	0.4	1.01	0.06	-		6.7	9	0.1	

						Coarse	e Organ	lics	Coars	se Mir	erals				Fine E	arth											
Locat	Landus	e Rep	Samp	9	9	wt% of sample	N total (%)	P total (ppm)	wt% of sample	N total (%)	P total (ppm)	K total (ppm)	Fe total (%)	AI total (%)	wt% of sample	N total (%) (P total ppm) (K total ppm)	Fe total (%)	-e ₂ 0 ₃ (%)	Al / total (%)	Al ₂ 0 ₃ (%) ((0 (0	AI (1:5) (3aCl ₂) ppm)	ECe CaCO ₃ pl mS/m) (wt%) (1: (H ₂	5) (Cal	H Mois (5) (9 CI2)	sture 6)
Brookton																											
BR	_	2	A	0	10	-	0.373	340	0) 66	.065	61	300	0.22	0.07	0.22	0.03	2	4 5.	4 4	5	0
BR	_	2	В	10	20	0									66	0.018	29	360	0.24	0.13	0.26	0.04	2	2 5.	3 4	33	0
BR	_	2	c	20	30	0									66	011	19	380	0.24	0.08	0.25	0.03	ŝ	1 5.	3 4	4	0
BR	_	2		30	40	0			2						98 (0.059	52	340	0.25	0.08	0.29	0.03	-	5 5.	2 4	4.	0
BR	_	2	ш	40	50	0			65	0.015	77	1300	5.86	8.19	35 (0.019	24	360	0.27	0.08	0.28	0.04	2	2 5.	1 4	2 0	e.
BR	_	2	ш	50	70	0			89	0.016	67	1500	4.43	10	11 (000.0	24	370	0.29	0.1	0.24	0.03	2	1 5.	4 4	4 0	9
BR		2	A	0	10	2	0.133	68	0						98 (.009	10	260	0.25	0.1	0.24	0.03	$\overline{\nabla}$	1 6	4	8	
BR		2	в	10	20	0									98 (0.023	14	230	0.28	0.08	0.25	0.03	$\overline{\nabla}$	2 5.	8 4	.6 (_
BR		2	ပ	20	30	0			ŝ	0.034	110	2500	10.7	7.29	97 (0.015	<10	230	0.22	0.08	0.23	0.03	$\overline{\nabla}$	1 6	4	.6 (_
BR		2		30	60	0			11	0.019	100	2800	10.3	8.6	89 (.007	10	220	0.2	0.07	0.16	0.02	$\overline{\nabla}$	1 6.	1 4	6	
BR		2	ш	60	85	0			71	0.008	100	2000	7.16	11.2	29 (0.022	13	300	0.25	0.1	0.25	0.04		1 5.	7 4	.4 (
Mullewa																											
MU	_	co	A	0	10	0			9	0.033	60	3100	6.99	3.18	94 (0.038	71	5600	2.08	1.35	2.95	0.2	-	15 5.	6 4	.6 0	c.
MU	_	ĉ	в	10	20	0			9	0.018	99	3300	7.38	3.44	94 (0.024	41	4900	1.89	1.4	2.83	0.2	4	7 5	7	0	ŝ
MU	_	ო	c	20	30	0			8	0.008	62	2700	9.84	3.71	92 (0.021	31	5400	2.08	1.45	3.1	0.2	œ	6 4.	8	0	c.
MU	_	ო		30	45	0			15	0.007	92	3100	13.5	4.97	85	0.02	29	5400	2.13	1.48	3.25	0.21	4	8 4.	7 1	0	7
MU	_	ო	ш	45	80	0			72	0.011	110	6100	13.7	8.87	28 (0.027	40	5100	2.22	1.57	4.07	0.24		10 5.	7 4	7 1	5
MU	_	ო	щ	80	100	0			55	<0.00	5 50	7600	6.28	7.45	45 (0.015	41	3700	1.94	1.45	4.21	0.21		8 7.	5 6	2 2	5
MU	S	-	A	0	10				2						97	0.03	48	5300	1.5	1.16	2.59	0.19	-	17 5	4	3 0	2
MU	S	-	8	10	20	0			S						97 (0.021	35	3300	1.25	1.16	2.65	0.18	4	8 4.	8 4	1	ŝ
MU	S	-	c	20	30	0			5						95 (0.019	32	3200	2.22	1.28	2.88	0.18	4	10 4.	7 4	1	ŝ
MU	S	-		30	70	0			10) 06	0.015	19	5900	2	1.35	2.93	0.2	9	14 4.	4	0	4
MU	S	-	ш	70	100	0			76						24 (0.015	25	3000	1.85	1.29	4	0.22	2	10 5	4	2 0	-
MU	S	-	ш	70	100	0			76						24 (0.015	25	3000	1.85	1.29	4	0.22	2	10 5	4	2 0	-
MU	S	-	ш	100	120	0			64						36 (0.011	20	5300	1.63		3.5	0.16	. 	8 5.	2 4	3	[∞]

						Coar	'se Orga	nics	Coa	rse Min	erals			-	Fine Eart	÷											
Locat	Landus	e Rep	Samp	9	9	wt% o sample	of N e total (%)	P total (ppm)	wt% o sampl	f N e total (%)	P total (ppm)	K total (ppm)	Fe / total to (%) (%	Al wt ntal sa %)	1% of N mple tot (%	(pr	P k tal tot im) (pp	m) al to	e Fe ₂ tal (% 6)	(0) (0) (0)	N Al2 tal (% 6)	03 AI 6) (1:5 (caci (ppm	ECe (mS/r (n)	n) (wt%) (1:5) (H ₂ 0)	рН (1:5) (CaCl ₂	Moisture (%))	(D)
	:	¢	·	¢		•			·					(
MU		ŝ	A	0	10	m	0.216	140	-					5	10°0	46	2 46	00 1.	83 1.4	46 2.	77 0.5	26 2	4	5.4	4.4	0.2	
MU		ę	8	10	20	-	0.154	72	2	0.023	82	2400	13.4 3.	83 9	7 0.02	24 2	9 42	00 1.1	57 1.5	34 2.	32 0.2	21 9	4	5	4.1	0.3	
MU		co	ပ	20	30		0.268	71	2	0.018	97	2600	16.3 4.	66 9	7 0.02	21 2	2 47	00 1.8	38 1.4	47 2.	57 0.2	22 15	9	4.6	4	0.3	
MU		c		30	55	0	0.123	68	2	0.013	83	2800	16.4 4.	78 9	8 0.0	19 2	6 50	00 2.	14 1.6	33 3.	43 0.2	24 22	9	4.5	3.9	0.4	
MU		ŝ	ш	55	85	0			12	0.006	88	3800	17.6 5.	72 8	8 0.0	17 2	9 59	00 2.	18 1.6	34 3	.3 0.2	25 3	12	4.4	4.1	0.2	
MU		c	ш	85	65	0			59	<0.005	130	5500	17.5 8.	57 4	1 0.0	18 3	1 67	2.	2 1.4	46 3.	58 0.2	23 1	11	5.2	4.5	0.8	
MU		ę	G	95	105	0			71	<0.005	100	7100	12.7 8.	04 2	9 0.0	18 3	0 63	00 2.0	95 1.7	77 3.	91 0.2	25 <1	12	5.6	4.8		
Merred	'n																										
ME		ĉ	A	0	10	-	0.298	200	2					6	8 0.02	44 7	2 54	0 1.5	37 1	33.	44 0.1	18 1	2	5.8	4.6	0.4	
ME		ŝ	В	10	20	0			-					6	9 0.02	23 3	12 46	0 1.	39 1.	2 4.	04 0.1	8 8	2	Ð	4.1	0.4	
ME	_	c	ပ	20	30	0			2					6	8 0.0	19 1	8 57	0 1.(53 1.5	32 4.	08 0.1	19 15	2	4.8	4.1	0.6	_
ME	_	c		30	50	0			ო	0.013	22	1600	3.37 7.	.2 9	7 0.01	13 1	7 65	0 1.5	32 1.5	31 5.	08 0.1	19 12	ŝ	4.8	4.2	2.2	_
ME	_	co	ш	50	80	0			6	0.007	23	1300	2.95 6.	87 9	1 0.0	-	3 56	0 1.9	91 1.4	46 4.	97 0.2	22 26	2	4.8	4.1	2.4	
ME		c	ш	80	110	0			4	<0.005	17	1100	3.46 7.	65 9	6 0.0	37 1	6 52	0 2.	2 1.7	78 4	.6 0.2	28 10	ŝ	5	4.2	1.5	
ME		ŝ	G	110	140	0			15	<0.005	22	1100	3.3 8.	22 8	5 0.0(1 1	6 62	0 1.1	53 1.7	73 4.	24 0.2	28 1	ŝ	5.2	4.6	-	
ME	S	-	A	0	10	-	0.38	250	-					6	9 0.0	. 9	09 6.	1.4	47 1.(38 4.	29 0.2	22 1	ŝ	5.8	4.7	0.4	
ME	S	-	В	10	20	0			2					6	8 0.03	32 2	2 55	0 1.	55 1.2	23 4.	69 0.2	21 12	2	5	4.1	0.4	
ME	S	-	C	20	30	0			2					6	8 0.0	2 1	6 61	0 1.5	54 1.3	34 5.	12 0.	2 18	ŝ	4.7	4.1	0.4	
ME	S	-		30	50	0			4					6	6 0.01	15 1	6 92	0 1.5	91 1.4	19 5	.7 0.2	23 23	ŝ	4.6	4	0.3	
ME	S	-	ш	50	80	0			6					6	1 0.0	11 1	8 47	0 2.(J9 1. ⁴	19 5.	92 0.2	25 19	2	4.7	4.1	0.4	_
ME	S	-	ш	80	110	0			13					8	7 0.00	1 10	6 42	0 2.	17 1.5	54 5.	71 0.2	26 6	2	4.9	4.2	0.8	
ME	S	-	G	110	140	0			6					6	1 0.0(1 1	6 38	0 2.3	34 1.4	49 6.	17 0.2	27 2	S	5	4.4	0.4	
ME		-	A	0	10	2	0.107	56	-					6	7 0.02	29 2	1 57	0 1.	4 0.9	39 3.	65 0.1	17 2	2	5.6	4.6	0.3	
ME		-	В	10	20	-	0.095	38	4					6	15 0.02	24 1	6 47	0 1.4	41 1.(J9 3.	83 0.1	17 7	2	5.1	4.2	0.2	
ME		-	S	20	30	0			ი					6	7 0.02	22 1	8 61	0 1	74 1.5	36 4.	95 0.1	19 17	2	4.7	4	0.3	
ME		-		30	50	0			5	0.011	20	1300	2.91 6.	16 9	5 0.0	14 1	4 62	0 1.6	35 1.6	32 5.	22 0.2	24 33	2	4.6	4	0.3	

	Moisture (%))	0.5	0.4	0.3		0.1	0.1	0.2	0.2	2	3.2	0.2	0.2	8.3	1.7	2.8	4.2		0.3	0.1	2.7	4.3
	рН (1:5) (CaCl ₂	4	4.1	4.4		4.8	5.2	5.6	6.2	7.2	7.5	5.4	5.3	5.5	6.8	7.6	7.6	5.1	5.2	5.3	7.9	8.2
l	CaCO ₃ pH (wt%) (1:5) (H ₂ 0)	4.6	4.8	4.4		5.8	6.3	6.8	7.6	8.8	6	6.3	6.3	6.5	8.4	6	6	9	6.2	6.4	8.8	9.1
	ECe (mS/m)	2	2	6		5	2	2	2	10	15	S	2	2	10	21	30	4	ŝ	2	75	98
	AI (1:5) (CaCl ₂) (ppm)	36	12	-		<2	\$	۲ <u>۲</u>	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	2	\$
	AI ₂ 0 ₃ (%)	0.22	0.25	0.24		0.05	0.03	0.05	0.04	0.28	0.23	0.04	0.02	0.06	0.2	0.18	0.19	0.05	0.03	0.05	0.28	0.25
	AI total (%)	5.17	5.91	5.71		0.88	0.57	0.83	1.01	9.12	10.9	0.44	0.64	0.93	5.79	9.48	10.7	÷	0.64	0.7	8.35	9.71
	Fe ₂ 0 ₃ (%)	1.43	1.55	1.49		0.12	0.11	0.22	0.21	1.29	0.99	0.09	0.1	0.26	0.98	0.7	0.7	0.15	0.09	0.23	-	0.75
	Fe total (%)	2	2.33	2.26		0.36	0.33	0.65	0.65	2.99	2.88	0.27	0.33	0.62	1.97	2.88	3.13	0.4	0.31	0.5	3.1	3.19
	K total (ppm)	600	580	500		630	600	620	720	2500	2800	2600	530	660	2600	3300	4100	870	600	640	4400	4700
	P total (ppm)	16	18	<10		67	29	26	21	27	24	60	23	17	26	24	26	16	12	12	26	27
Earth	N total (%)	0.01	0.01	0.01		0.047	0.013	0.015	0.011	0.014	0.005	0.032	0.018	0.014	0.013	0.008	0.007	0.028	0.018	0.013	0.01	0.005
Fine I	wt% of sample	89	91	88		97	69	33	34	97	98	97	89	45	81	81	71	93	99	40	65	60
	AI total (%)	6.12	6.49	6.71			9.87	10	9.92	10.4	14.1		9.75	10	9.72	11.4	10.9		9.51	9.19	÷	÷
	Fe total (%)	2.42	2.71	2.81			12.8	12.2	12.4	9.77	6.7		8.89	÷	10.2	9.05	9.73		8.8	9.2	7.9	7.19
	K total (ppm)	1100	800	800			3600	3400	3200	2700	2600		1400	1700	2300	2600	2300		2900	3200	2900	3200
erals	P total (ppm)	22	10	18			59	43	38	26	16		51	45	38	25	24		38	38	29	26
'se Min	f N e total (%)	0.006	<0.005	<0.005			<0.005	<0.005	<0.005	0.005	<0.005		0.006	<0.005	<0.005	<0.005	<0.005		<0.005	<0.005	<0.005	<0.005
Coal	wt% o sampli	÷	6	12		ŝ	31	67	66	ç	2	2	7	55	19	19	29	7	33	60	34	40
lics	P total (ppm)					870						310						100	61	47	39	
) Organ	N total (%)					0.929						0.385						0.363	0.217	0.207	0.129	
Coarse	wt% of sample	0	0	0		-	0	0	0	0	0	-	0	0	0	0	0	0	-	0	2	0
	9	80	110	140		10	20	30	40	60	90	10	20	30	60	90	120	10	20	30	60	06
	9	50	. 08	110		0	10	20	30	40	60	0	10	20	30	60	. 06	0	10	20	30	60
	Samp	ш	щ	5		A	8	c	5	D	ш	A	8	c	D	ш	щ	A	В	S	D	ш
	Rep	-	-	-	ē	2	2	2	2	2	2	4	4	4	4	4	4	-	-	-	-	-
	Landuse				gate (deep	_	_			_	_	S	S	S	S	S	S					
	Locat	ME	ME	ME	Newde	ND	ND	QN	ND	ND	ND	ND	ND	DN	ND	DN	ND	ND	ND	ND	ND	ND

	Moisture (%)		7.5	0.5	2.6	5.7	6	6		0.3	0.1	0.2	0.5	9.5	10	0.2	0.1	0.1	0.1	0	1.2	0.3	0.2	0.1	0	0	1.3
	pH 1 (1:5) (CaCl ₂)		8.7	5.9	7.2	8.4	8.6	8.4		4.4	4.2	4.3	4.5	5.9	6.1	4.6	2	4.9		5.3	5.9	2	2	5.2	5.6	5.6	5.2
	, pH (1:5) (H ₂ 0)		9.7	7	8.3	9.2	9.4	9.1		5.4	5.2	5.2	5.8	6.8	7.1	5.4	5.8	5.9		6.4	7	6.2	6.3	6.4	6.8	6.8	9
	caCO ₂ (wt%)		5	\$	\$	5	6	ŝ																			
	ECe (mS/m)		75	4	30	61	150	170		4	2	2	-	2	4	9	2			2	10	2	2	2	2	2	50
	AI (1:5) (CaCl ₂) (ppm)									-	2	2	13			-	-	$\overline{\nabla}$									
	AI ₂ 03 (%)		0.13	0.04	0.1	0.13	0.13	0.16		0.04	0.03	0.04	0.05	0.52	0.48	0.03	0.03	0.02		0.07	0.45	0.03	0.02	0.02	0.03	0.06	0.38
	AI total (%)		6.16	1.23	4.53	6.79	5.74	6.75		0.31	0.31	0.27	0.43	9.3	10.3	0.23	0.28	0.28		0.92	10.6	0.19	0.16	0.16	0.23	0.43	7.16
	Fe ₂ 0 ₃ (%)		0.38	0.11	0.28	0.28	0.3	0.44		0.13	0.11	0.14	0.14	2.36	2.5	0.07	0.08	0.07		0.25	2.58	0.08	0.09	0.07	0.14	0.24	2.86
	Fe total (%)		2.55	0.58	2.04	3.05	2.7	2.99		0.25	0.24	0.27	0.39	4.97	5.95	0.17	0.16	0.18		0.54	4.66	0.17	0.17	0.15	0.21	0.35	3.26
	K total (ppm)		10200	2700	7900	12400	12700	14200		400	500	500	500	5200	5200	300	400	400		600	3400	300	300	300	300	400	3700
	P total (ppm)		17	15	17	22	22	20		56	24	21	22	29	27	42	23	17		17	26	16	<10	12	24	13	<10
arth	N total (%)		0.007	0.034	0.029	0.027	0.014	0.01		0.056	0.016	0.008	0.013	0.013	0.007	0.049	0.017	0.009		0.015	0.008	0.028	0.011	:0.005	0.005	0.007	0.008
Fine E	wt% of sample		75	66	66	94	50	85		100	100	66	22	83	80	66	100	98	95	20	72	98	66	66	98 <	32	87
	AI total (%)	j				3.82	4.58	5.95				5.77	5.42	11.2	8.6										4.67	6.37	9.56
	Fe total (%)					1.46	1.72	2.28				27.2	24.7	10.3	13.9										13.1	15.7	5.08
	K total (ppm)					10600	11900	13400				3200	4100	8400	6900										1700	1900	6200
erals	P total (ppm)					19	17	13				110	6 46	35	38										33	36	19
'se Min	f N e total (%)					0.018	0.013	0.006				0.014	<0.005	0.016	0.005										0.019	<0.005	0.013
Соан	wt% o sample		25	0	0	9	50	15		0	0	-	78	17	20	0	0	2	5	80	28	0	0	0	2	68	13
iics	P total (ppm)			60	56					740						460						110	86	57			
e Organ	N total (%)			0.251	0.249											-						0.321	0.272	0.247			
Coarse	vt% of ample		0	-	0	0	0	0		. 	0	0	0	0	0	-	0	0	0	0	0	-	-	0	0	0	0
	9	i	00	10	20	30	70	00		10	20	30	40	70	00	10	20	30	40	60	90	10	20	30	55	65	95
	8		70 1	0	10	20	30	70 1		0	10	20	30	40	70 1	0	10	20	30	40	60	0	10	20	30	55	65
	amp		ш	A	8	C	D	ш		A	В	S	D	ш	ш	A	8	S	D	ш	ш	A	В	C	D	ш	ц
	Rep S		2	2	2	2	2	2			-	-	-	-		-	-			-	-	-	-	-	-	-	
	Landuse		ഗ						dn	_	_	_	_	_	_	S	S	S	S	S	S						
	Locat		HM	HM	HM	HM	HM	MH	Conding	00	00	00	CO	00	CO	CO	CO	CO	CO	CO	00	CO	CO	CO	CO	CO	CO

APPENDIX 4

Exchangeable Cations and Saturation Extract Data for Fine Earth Fraction

LEGEND

AI	Aluminum
Ca	Calcium
CEC	Cation Exchange Capacity
EC	Electrical Conductivity
H ₂ 0	Hydrogen Dioxide
К	Potassium
LD	Lower Depth
Locat	Location
Na	Sodium
Mg	Magnesium
Mn	Manganese
ppm	Parts per million
Rep	Replicate
Samp	Sample
SAR	Sodium Absorption Ration
UD	Upper Depth

TABLE OF CONTENTS

	Page No.
Northampton	127
Badgingarra	128
Brookton	129
Mullewa	129
Merredin	130
Newdegate (deep)	131
Newdegate (shallow)	132
Wittenoom Hills	133
Condingup	134

	SAR																						
l	S (me/L)																						
l	K (me/L)																						
l	Na (me/L)																						
l	Mg (me/L)																						
act	Ca (me/L)																						
tion extra	ECe (mS/m)																						
Satura	Hd																						
l	H ₂ 0 %																						
	Mn (cmol(+) /kg)		0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02				<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
l	AI (cmol(+) /kg)		0.04	0.1	0.08	0.04	0.02	<0.02	<0.02	<0.02	0.02	0.02	<0.02				0.06	0.03	0.03	<0.02	<0.02	<0.02	
l	K cmol(+) /kg)		0.08	0.03	0.04	0.04	0.04	0.04	0.03	0.03	<0.02	<0.02	0.02	0.03	0.04	0.04	0.07	0.04	0.03	0.02	0.02	0.03	0.08
SUO	Na (cmol(+) (/kg)		0.05	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.04	0.02	<0.02	<0.02	0.03	<0.02	0.02	0.05	0.03	0.02	0.02	0.02	0.02	0.05
able Cati	Mg (cmol(+) /kg)		0.3	0.19	0.13	0.15	0.23	0.32	0.28	0.39	0.22	0.13	0.11	0.16	0.27	0.23	0.29	0.22	0.2	0.12	0.12	0.24	0.6
Exchange	Ca (cmol(+) /kg)		1.76	0.92	0.49	0.41	0.4	0.4	0.33	1.54	0.96	0.46	0.35	0.31	0.59	0.58	1.07	0.7	0.52	0.21	0.2	0.36	0.6
l	CEC cmol(+) /kg)													$\overline{\nabla}$	2	2							2
	Clay (%) (4.1	5.3	7.8	9.8	10.9	12.4	11.3	2.4	2.7	3.0	3.4	5.1	10.6	12.1	1.8	2.4	2.0	1.9	2.6	5.0	16.7
l	Moisture (%)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
l	9		10	20	30	50	80	110	140	10	20	30	50	80	110	140	10	20	30	50	80	110	140
	D		0	10	20	30	50	80	110	0	10	20	30	50	80	110	0	10	20	30	50	80	110
	Samp		A	8	c	Ω	ш	ш	G	A	В	c	D	ш	ш	IJ	A	в	c	D	ш	ш	G
	Rep		4	4	4	4	4	4	4	-	-	-	-	-	-	-	2	2	2	2	2	2	2
	Landuse	pton					_	_	_	S	S	S	S	S	S	S							
	Locat	Northam	HN	HN	HN	HN	HN	HN	HN	HN	HN	HN	HN	HN	HN	HN	HN	HN	HN	HN	HN	HN	HN

	SAR																									
	S (me/L)																									
	K (me/L)																									
	Na (me/L)																									
	Mg (me/L)																									
t.	Ca (me/L)																									
on extrac	ECe (mS/m)																									
Saturatic	Hd																									
	H ₂ 0 %																									
	Mn cmol(+) /kg)			<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02			Ì
	AI cmol(+) (/kg)			0.03	0.06	0.05	0.07	0.09	0.04	<0.02	<0.02	0.04	0.06	0.03	0.02	0.02	0.02	<0.02	<0.02	0.08	0.03	0.02	0.02			
	K mol(+) (c /kg)			0.03	<0.02	:0.02	<0.02	<0.02	c0.02	:0.02	0.02	c0.02	<0.02	<0.02	c0.02	<0.02	0.02	0.03	0.05	0.02	0.02	c0.02	0.02	0.02	0.04	0.03
us	Na mol(+) (c /kg)			0.04	0.02	0.02	0.02 <	0.02 <	0.02	0.02	0.02	0.02 <	0.02	0.02	0.02	0.02	:0.02	0.02	:0.02	0.06	0.02	0.02	:0.02	0.02	:0.02	0.03
ble Catio	Mg mol(+) (c /kg)			0.21	0.06 <	0.04 <	0.03 <	0.02 <	0.03 <	0.03 <	0.22	0.16	0.07 <	0.03 <	0.04 <	0.07 <	0.17 <	0.24 <	0.25 <	0.21	0.13	> 60.0	0.08 <	0.09	> 60.0	0 11
changea	Ca mol(+) (c /kg)			1.59	0.42	0.18	0.13	0.06	0.12	0.12	0.39	1.47	0.48	0.19	0.19	0.29	0.34	0.37	0.35	1.58	0.84	0.46	0.3	0.3	0.27	0.25
EX	CEC nol(+) (c 'kg)																								Ţ	-
	(cr (cr (cr			1.3	.9	.9	1.0	1.5	2.6	2.5	3.7	1.4	1.4	1.3	1.7	1.5	3.2	0.5	1.3	2.2	1.1	1.7	2.9	5.6	3.5	7 5
	loisture C (%) (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2			10	50	30	00	30	0	20	20	0	50	30	20	30	10	0t	30	0	50	30	30	06	50	05
				0	0	0	0	0	0 11	0 15	0 17	0	0	0	0	0	0 11	0 14	0 16	0	0	0	0	0	0 12	0 15
	n n			4	1	0	0 3	П 5	ю	11	Н 15	Д	- -	3	0 3	Е 5	ю	11	H 14	4	9	0	3	Ш	б	12
	ep Sa			2	5	5	2	2	2	2	2	2		2	2	2	2	2	5	-	_	-		_	_	-
	use R																									
	Landı		garra	_	_	_	_	_	_	_	_	S	S	S	S	S	S	S	S							
	Locat	:	Badgin	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA

						Û	xchangea	ble Catio	SUC				Satı	uration ext	iract					
Rep Samp UD LD Mois (⁹	mp UD LD Mois (%	LD Mois (%)	Mois (%	sture 6)	: Clay (%) (CEC (cmol(+) (i /kg)	Ca cmol(+) (c /kg)	Mg smol(+) (c /kg)	Na cmol(+) (i /kg)	K cmol(+) (/kg)	AI (cmol(+) /kg)	Mn (cmol(+) /kg)	H ₂ 0 pH %	ECe (mS/m	Ca) (me/L)	Mg (me/L)	Na (me/L)	K (me/L)	S (me/L)	SAR
2 A 0 10 (A 0 10 (10		0	1.5		1.46	0.27	0.02	0.04	0.12	0.02								
2 B 10 20 (3 10 20 (20 (0	1.6		0.43	0.06	<0.02	0.03	0.18	<0.02								
2 C 20 30	3 20 30	30		0	1.9		0.19	0.02	<0.02	0.02	0.14	<0.02								
2 D 30 40	0 30 40	40		0	1.6		1.24	0.25	0.03	0.04	0.14	0.02								
2 E 40 50	E 40 50	50		0	5.4		0.38	0.05	<0.02	0.02	0.2	<0.02								
2 F 50 70	e 50 70	20		-	9.0		0.18	<0.02	<0.02	0.02	0.13	<0.02								
2 A 0 10	4 0 10	10		0	0.9		0.25	0.15	0.02	0.02	0.06	<0.02								
2 B 10 20	3 10 20	20		0	1.1		0.75	0.25	0.03	0.04	0.12	<0.02								
2 C 20 30 (C 20 30 (30		0	1:		0.5	0.2	<0.02	0.03	0.09	<0.02								
2 D 30 60	0 30 60	60		0	1.1		0.26	0.12	<0.02	0.02	0.04	<0.02								
2 E 60 85	E 60 85	85		0	1.9		0.56	0.2	0.03	0.04	0.15	<0.02								
					1							-								
3 A 0 10	A 0 10	10		0	9.7		0.7	0.36	0.52	0.31	0.09	<0.02								
3 B 10 20	3 10 20	20		0	10.4		0.33	0.17	0.24	0.13	0.34	<0.02								
3 C 20 30	3 20 30	30		0	11.6		0.27	0.14	0.2	0.09	0.42	<0.02								
3 D 30 45	D 30 45	45		-	12.2		0.37	0.17	0.27	0.08	0.32	<0.02								
3 E 45 80	E 45 80	80		2	13.1		0.41	0.54	0.55	0.14	0.07	<0.02								
3 F 80 100	5 80 100	100		co	13.1	ę	0.4	1.2	0.83	0.18	0	0								
1 A 0 10	4 0 10	10		0	6.6		0.52	0.22	0.58	0.13	0.22	<0.02								
1 B 10 20	3 10 20	20		0	7.6		0.27	0.13	0.28	0.08	0.34	<0.02								
1 C 20 30	c 20 30	30		0	8.8		0.3	0.16	0.32	0.07	0.3	<0.02								
1 D 30 70	0 30 70	70		0	9.3		0.25	0.18	0.45	0.05	0.36	<0.02								
1 E 70 100	E 70 100	100		0	10.9		0.21	0.46	0.43	0.06	0.24	<0.02								
1 E 70 100	E 70 100	100		0	10.8		0.21	0.46	0.43	0.06	0.24	<0.02								

								Ê	changes	ıble Cati	SUO				Satı	ıration ext	ract					
Locat	Landuse	Rep S	amp L	9	LD	Aoisture (%)	Clay (%) (CEC cmol(+) (c /kg)	Ca smol(+) (/kg)	Mg cmol(+) (/kg)	Na (cmol(+) /kg)	K (cmol(+) /kg)	AI (cmol(+) /kg)	Mn (cmol(+) /kg)	Н ₂ 0 рН %	ECe (mS/m	Ca (me/L)	Mg (me/L)	Na (me/L)	K (me/L)	S (me/L)	SAR
MU	S	-	F 1(00 1	20	-	9.5		0.2	0.7	0.45	0.08	0.11	<0.02								
MU		ę	A	0	10	0	9.3		0.59	0.21	0.1	0.14	0.29	0.02								
MU		S	8	10	20	0	10.4		0.2	0.12	0.09	0.09	0.43	<0.02								
MU		ç	0	20	30	0	11.1		0.13	0.1	0.13	0.08	0.47	<0.02								
MU		ŝ		30	55	0	12.4		0.08	0.07	0.15	0.06	0.6	<0.02								
MU		ო	ш	55	85	0	12.7		0.29	0.29	0.39	0.08	0.25	<0.02								
MU		ŝ	ш	85	95		13.8		0.36	0.56	0.55	0.1	0.05	<0.02								
MU		ო	5	95 1	05	-	15.0		0.42	0.89	0.76	0.17	0.02	<0.02								
Merredi	.=																					
ME	_	S	A	0	10	0	12.4		1.56	0.56	0.14	0.1	0.14	<0.02								
ME		ŝ	8	10	20	0	20.0		0.75	0.34	0.1	0.03	0.41	<0.02								
ME		ŝ	0	20	30		21.4		0.56	0.22	0.13	0.02	0.56	<0.02								
ME		ç		30	50	2	22.6		0.63	0.25	0.08	<0.02	0.54	<0.02								
ME		ç	ш	50	80	2	23.7		0.33	0.26	0.09	<0.02	0.87	<0.02								
ME		c	ш	80 1	10	2	24.3		0.48	0.64	0.15	<0.02	0.5	<0.02								
ME	_	co	G 1.	10 1	40		21.6		0.67	1.23	0.14	<0.02	0.07	<0.02								
ME	S	-	A	0	10	0	12.0		1.36	0.55	0.15	0.17	0.21	<0.02								
ME	S	-	B	10	20	0	18.0		0.6	0.26	0.09	0.04	0.55	<0.02								
ME	S		0	20	30	0	20.9		0.47	0.19	0.08	0.02	0.6	<0.02								
ME	S			30	50	0	21.7		0.36	0.22	0.06	<0.02	0.77	<0.02								
ME	S		ш	50	80	0	23.1		0.29	0.34	0.09	<0.02	0.64	<0.02								
ME	S	-	ш	80 1	10		20.1		0.44	0.66	0.11	<0.02	0.3	<0.02								
ME	S		G 1.	10 1	40	0	20.0		0.47	0.85	0.11	<0.02	0.14	<0.02								
ME			A	0	10	0	14.6		1.01	0.4	0.09	0.1	0.12	<0.02								
ME		-	8	10	20	0	18.8		0.6	0.31	0.11	0.06	0.34	<0.02								

	SAR																	30	38				39	33
	S (me/L)																	7.53	10				10	13
	K (me/L)																	0.17	0.21				0.21	0.36
	Na (me/L)																	19	27				28	79
	Mg (me/L)																	0.68	0.96				0.98	10
act	Ca (me/L)																	0.06	0.05				0.05	1.3
tion extra	ECe (mS/m)																	210	300				310	900
Satura	Hd																	7.8	7.8				7.8	8.1
	H ₂ 0 %																	41	44				40	44
	Mn (cmol(+) /kg)	<0.02	<0.02	<0.02	<0.02	<0.02		0.02	<0.02					0.02	<0.02					<0.02	<0.02	<0.02		
	AI (cmol(+) /kg)	0.58	0.95	0.99	0.48	0.09		0.11	0.02					0.03	0.04					0.1	0.06	0.03		
	K (cmol(+) /kg)	0.03	<0.02	<0.02	<0.02	<0.02		0.05	0.03	0.05	0.07	0.62	0.7	0.07	0.05	0.04	0.46	0.8	1.03	0.08	0.05	0.04	0.88	1.14
tions	Na (cmol(+) /kg)	0.08	0.08	0.08	0.08	0.18		0.11	0.04	0.06	0.14	3.09	6.5	0.03	0.03	0.04	2.86	6.21	8.03	0.1	0.07	0.05	6.98	9.77
eable Cai	Mg (cmol(+) /kg)	0.25	0.09	0.17	0.57	0.87		0.25	0.12	0.22	0.48	4.69	7	0.39	0.32	0.3	4.34	7.53	7.34	0.43	0.39	0.32	7.59	7.74
Exchang	Ca (cmol(+) /kg)	0.45	0.19	0.12	0.34	0.68		1.68	0.71	0.71	0.63	. .	0.43	2.35	1.53	0.95	0.46	0.41	0.4	1.61	1.23	0.67	1.19	1.22
	CEC (cmol(+) /kg)									2	2	14	19			2	12	21	22				20	22
	Clay (%)	21.4	22.2	23.2	22.7	19.6		2.0	2.0	2.1	4.0	43.2	36.1	2.6	2.8	3.1	38.0	44.6	36.6	3.3	2.6	2.1	31.8	25.6
	Moisture (%)	0	0	-	0	0		0	0	0	0	2	co	0	0	œ	2	co N	4		0	0	ç	4
	Р	30	50	80	110	140		10	20	30	40	60	06	10	20	30	60	90	120	10	20	30	60	90
	D	20	30	50	80	110		0	10	20	30	40	60	0	10	20	30	60	90	0	10	20	30	60
	Samp	c	D	ш	ш	G		A	8	J	C1	D	ш	A	8	C	D	ш	ш	A	в	S	D	ш
	Rep	-	-	-	-	-		2	2	2	2	2	2	4	4	4	4	4	4	-	-	-	-	-
	Landuse						(daan) an					_	_	S	S	S	S	S	S					
	Locat	ME	ME	ME	ME	ME	Newneda	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

								Ľ	xchanges	able Cati	SUO					Saturati	on extrac	ţ.					
Land	use	Rep	Samp	D	LD	Moisture (%)	Clay (%)	CEC (cmol(+) (/kg)	Ca (cmol(+) (/kg)	Mg cmol(+) /kg)	Na (cmol(+) /kg)	K (cmol(+) /kg)	AI (cmol(+) /kg)	Mn (cmol(+) /kg)	H ₂ 0 %	Hd	ECe (mS/m)	Ca (me/L)	Mg (me/L)	Na (me/L)	K (me/L)	S (me/L)	SAR
Ð	(shallow	()																					
	_	4	A	0	10	0	2.5		1.19	0.26	0.21	0.08	0.06	<0.02									
	_	4	В	10	20	0	2.4		0.46	0.18	0.12	0.03	0.04	0.02									
	_	4	Ċ	20	30	2	28.2	80	0.94	3.57	2.66	0.17											
		4	D	30	60	ŝ	34.5	20		œ	6.89	0.57			37	7.9	290	0.18	1.12	27	0.21	5.28	33
		4	ш	60	06	4	25.6	27	1.11	8.42	10.51	0.92			45	8.1	420	0.14	1.46	40	0.21	9.04	45
	S	-	A	0	10	0	2.7	4	2.58	0.48	0.09	0.11											
	S	-	В	10	20	0	2.4	2	1.07	0.31	0.07	0.1											
	S	-	c	20	30	2	33.1	ŧ	1.69	3.32	1.93	0.51											
	S	-	D	30	60	2	39.9	17	2.03	5.65	5.19	1.04			34	8.1	310	0.39	1.28	29	0.29	7.24	32
	S	-	ш	60	06	ç	31.4	19	1.4	5.88	7.45	1.08			41	8.5	490	0.42	1.82	49	0.3	#	46
	Π	4	A	0	10	0	2.9		2.21	0.49	0.17	0.12	0.08	<0.02									
		4	В	10	20	0	2.5		1.24	0.42	0.16	0.07	0.04	<0.02									
		4	c	20	30		26.1	80	1.36	4	2.44	0.34											
	Π	4	D	30	60	3	39.1	18	1.07	6.54	5.86	0.7											
	Π	4	ш	60	06	4	32.1	27	1.16	8.64	11.38	1.22											

	K S SAR (me/L) (me/L)		1.68 1.29 2	1.68 1.29 2	1.68 1.29 2 0.4 1.22 6	1.68 1.29 2 0.4 1.22 6 0.57 3.45 29	1.68 1.29 2 0.4 1.22 6 0.57 3.45 29 0.61 6.34 51	1.68 1.29 2 0.4 1.22 6 0.57 3.45 29 0.61 6.34 51	1.68 1.29 2 0.4 1.22 6 0.57 3.45 29 0.61 6.34 51	1.68 1.29 2 0.4 1.22 6 0.57 3.45 29 0.61 6.34 51 0.49 3.74 29	1.68 1.29 2 0.4 1.22 6 0.57 3.45 29 0.61 6.34 51 0.49 3.74 29 0.37 2.72 36	1.68 1.29 2 0.4 1.22 6 0.57 3.45 29 0.61 6.34 51 0.63 3.74 29 0.37 2.72 36 0.49 4.24 48 0.49 4.24 48	1.68 1.29 2 0.4 1.22 6 0.57 3.45 29 0.61 6.34 51 0.63 3.74 29 0.37 2.72 36 0.49 4.24 48 0.49 4.24 48	1.68 1.29 2 0.4 1.22 6 0.57 3.45 29 0.61 6.34 51 0.61 3.74 29 0.37 2.72 36 0.49 4.24 48 0.47 2.21 14	1.68 1.29 2 0.4 1.22 6 0.57 3.45 29 0.61 6.34 51 0.61 6.34 51 0.61 5.345 29 0.61 6.34 51 0.61 9.74 29 0.37 2.72 36 0.49 3.74 29 0.49 3.74 29 0.49 3.74 29 0.49 3.74 29 0.49 3.74 29 0.49 3.74 29 0.49 3.74 29 0.49 4.24 48 0.49 2.21 14 0.68 3.37 20	1.68 1.29 2 0.4 1.22 6 0.57 3.45 29 0.61 6.34 51 0.61 6.34 51 0.61 7.22 6 0.37 2.72 36 0.49 3.74 29 0.49 4.24 48 0.49 4.24 48 0.47 2.21 14 0.48 3.37 20 0.49 3.37 201 1.21 12 12							
	-) (me/L)		2.93	2.93	2.93	7 2.93 7.36 5 21	7 2.93 7.36 5 21 8 38	2.93 7.36 5 21 38	2.93 7.36 5 21 38	2.93 2.136 2.1 2.1 3.8 3.8 3.8 3.3 3.1	 2.93 2.1 2.1 3.8 3.8 3.1 3.1 2.7 	 2.93 2.1 3.3 3.3 3.40 	 2.93 2.93 2.1 2.1 3.8 3.1 3.1 3.1 4.0 	 2.93 2.1 2.1 3.8 3.1 3.1	2.93 2.93 2.1 3.8 3.8 3.8 40 3.26 3.27 3.8 3.26 3.26 3.26 3.26 3.26 3.26 3.26 3.26	 2.93 2.1 3.3 2.1 3.3 3.1 3.3 4.0 3.4 4.0 3.8 3.8 3.8 3.8 3.8 3.8 3.8 4.0 3.8 4.0 4.0 3.8 4.0 4.0							
l	L) (me/L		9 3.37	9 3.37	9 3.37 6 1.61	9 3.37 6 1.61 9 0.75	9 3.37 6 1.61 9 0.75 9 0.92	9 3.37 6 1.61 9 0.75 9 0.92	9 3.37 6 1.61 9 0.75 9 0.92	9 3.37 6 1.61 9 0.75 9 0.92 9 1.67	9 3.37 6 1.61 9 0.75 9 0.92 9 1.67 2 0.76	9 3.37 6 1.61 9 0.75 9 0.92 2 0.75 2 0.75	9 3.37 6 1.61 9 0.75 9 0.92 2 1.08 2 0.75 2 1.08	9 3.37 6 1.61 9 0.75 9 1.67 2 0.75 2 0.75	9 3.37 6 1.61 9 0.75 9 0.92 2 1.08 2 1.08 6 4.47	9 3.37 6 1.61 9 0.75 9 1.67 2 0.75 2 0.75 6 4.47 6 4.47 5 3.73							
tract	Ca (۳/۱) (re/		0.0	0.0	0.0	0.0	0.00	0.0 1.4 0.1	0.0	0.0	0.0 1.4 0.1 0.6 0.3	0.0 1.4 0.2 0.6 0.3 0.3	0.0 1.44 0.1 0.3 0.3	0.0 1.4 0.7 0.3 0.3	0.0 1.4 0.2 0.3 0.3 0.3 2.3 2.3	0.0 1.4 0.7 0.3 0.3 2.7 2.8 2.7 2.8							
ation ex	ECe (mS/m		160	160	160	160 94 220	160 94 220 400	160 94 220 400	160 94 220 400	160 94 220 400 350	160 94 220 400 400 350 330	160 94 220 400 400 350 350 3300	160 94 220 400 400 330 330 330	160 94 220 220 400 400 350 330 330	160 94 94 220 400 400 350 330 330 330 470	160 94 220 400 400 400 330 330 430 470 1100							
Satura	На		7.9	7.9	7.9	7.9 8.2 9	7.9 8.2 9 8.9	7.9 8.2 8.9 8.9	7.9 8.9 8.9	7.9 8.2 8.9 8.3 8.3	7.9 8.3 8.3 8.3	7.9 8.2 8.3 8.3 8.8 8.7	7.9 8.2 8.3 8.3 8.7	7.9 8.2 8.3 8.3 8.3 8.7 6 7.6	7.9 8.3 8.3 8.3 8.3 8.7 8.7 8.7 8.2	7.9 8.2 8.3 8.3 8.3 8.3 8.7 8.7 8.3 8.3							
	H ₂ 0 %		28.5	28.5	28.5	28.5 45.9 45.3	28.5 45.9 68.6	28.5 45.9 68.6	28.5 45.9 45.3 68.6	28.5 45.9 45.3 68.6 42.8	28.5 45.9 45.3 68.6 68.6 42.8 42.8	28.5 45.9 45.3 68.6 68.6 42.8 41.7 53.1	28.5 45.9 45.3 68.6 68.6 41.7 53.1	28.5 25.9 45.9 45.3 68.6 68.6 68.6 63.6 63.6 53.1 53.1 39.6	28.5 45.9 45.3 68.6 68.6 41.7 53.1 53.1 51.4	28.5 28.5 45.9 45.3 68.6 68.6 63.6 53.1 53.1 53.1 53.1 53.1 53.1							
	Mn (cmol(+) /kg)							0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02							
	AI (cmol(+) /kg)							0.1	0.1	.0	0.1	0.1	E .	0.1	. .	1.0							
	K (cmol(+) /kg)		0.79	0.79	0.79 1.76 1.89	0.79 1.76 1.89 3.43	0.79 1.76 1.89 3.43 3.22	0.79 1.76 1.89 3.43 3.22 0.28	0.79 1.76 1.89 3.43 3.22 0.28 0.6	0.79 1.76 1.89 3.43 3.22 0.28 0.28 0.6	0.79 1.76 1.89 3.43 3.22 0.6 0.6 1.73	0.79 1.76 1.89 3.43 3.22 3.22 0.28 0.28 0.28 1.73 1.73 2.23	0.79 1.76 1.89 3.43 3.22 0.28 0.28 0.28 1.73 1.73 2.23	0.79 1.76 1.89 3.43 3.22 0.6 0.6 1.73 1.73 2.23 0.28 0.28 1.73	0.79 1.76 1.89 3.43 3.43 3.22 0.28 0.28 1.73 1.73 2.23 0.28 0.28 0.28 2.17 2.17	0.79 1.76 1.89 3.43 3.28 0.6 0.6 1.73 1.73 1.73 2.23 0.28 0.28 2.23 2.23 2.56							
tions	Na (cmol(+) /kg)		0.07	0.07 0.62	0.07 0.62 1.23	0.07 0.62 1.23 6.32	0.07 0.62 1.23 6.32 9.63	0.07 0.62 1.23 6.32 9.63 0.51	0.07 0.62 1.23 6.32 9.63 0.51 2.58	0.07 0.62 1.23 6.32 9.63 0.51 2.58 5.2	0.07 0.62 1.23 6.32 9.63 9.63 0.51 2.58 5.2 5.2	0.07 0.62 1.23 6.32 9.63 9.63 9.51 5.2 5.14 5.33 7.33	0.07 0.62 1.23 6.32 9.63 9.63 9.63 9.51 2.58 5.14 7.33 7.33	0.07 0.62 1.23 6.32 9.63 9.63 9.63 9.63 5.14 5.2 5.14 7.33 7.33 2.45	0.07 0.62 1.23 6.32 6.32 6.32 9.63 7.33 5.14 7.33 7.33 7.33 7.33 7.45 7.45	0.07 0.62 1.23 6.32 9.63 9.63 9.63 9.63 5.14 7.33 7.33 7.33 7.33 7.33 7.33 7.33							
eable Cat	Mg (cmol(+) /kg)		1.49	1.49	1.49 4.28 6.9	1.49 4.28 6.9 6.63	1.49 4.28 6.9 6.54	1.49 4.28 6.9 6.63 6.54 0.66	1.49 4.28 6.9 6.53 0.66 3.03	1.49 4.28 6.9 6.54 6.54 0.66 3.03 3.03	1.49 4.28 6.9 6.53 6.54 6.54 0.66 5.25 5.25 5.14	1.49 4.28 6.9 6.54 6.54 6.54 6.54 6.54 6.54 5.25 5.25 5.14	1.49 4.28 6.9 6.54 6.54 6.54 6.54 6.54 6.54 5.14 5.14 5.15 5.15 1.16	1.49 4.28 6.9 6.53 6.54 6.54 6.54 6.54 7.14 5.25 5.25 5.25 5.55 5.55	1.49 4.28 6.9 6.54 6.54 6.54 0.66 5.14 5.14 5.15 5.14 1.16 5.55 5.59 7.68	1.49 4.28 6.9 6.63 6.54 6.54 6.54 6.54 6.54 5.25 5.14 5.25 5.14 1.16 5.55 5.59 7.68							
Exchange	Ca (cmol(+) /kg)	 i	10.18	10.18 9.85	10.18 9.85 6.97	10.18 9.85 6.97 2.19	10.18 9.85 6.97 2.19 1.31	10.18 9.85 6.97 2.19 1.31 2.14	10.18 9.85 6.97 2.19 1.31 2.14 2.22	10.18 9.85 6.97 2.19 1.31 2.14 2.14 2.31	10.18 9.85 6.97 2.19 2.14 2.14 2.22 2.31 2.31	10.18 9.85 6.97 2.19 1.31 2.14 2.14 2.31 2.31 2.31 2.34	10.18 9.85 6.97 6.97 2.19 2.14 2.14 2.31 2.31 2.34 1.76 2.37	10.18 9.85 6.97 2.19 1.31 2.14 2.31 2.31 2.31 1.76 2.37 4.85	10.18 9.85 6.97 6.97 2.19 1.31 2.14 2.14 2.31 2.31 1.76 1.76 2.37 4.85 5.87	10.18 9.85 6.97 6.97 2.19 1.31 2.31 2.31 2.31 1.76 2.37 4.85 5.87 5.87							
	CEC (cmol(+) /kg)	 à	φ	φ φ	20 8 6	20 20 ²⁰ 20	8 8 20 20 23	20 8 20 23 23 23 23 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25	8 8 20 20 21 19 23 21 11	20 20 23 23 23 23 23 23 23 23 23 23 23 23 23	8 8 20 20 21 19 11 11 11 11 11	, 19 8 8 20 20 20 11 20 20 20 20 20 20 20 20 20 20 20 20 20	20 8 8 19 19 20 20 20 20 20 20 20 5 5 5 5	8 8 19 20 20 20 11 19 16 16 17 17 17 17	8 8 19 20 20 20 11 11 11 17 21 21	8 8 20 20 20 11 11 12 20 20 21 24 24							
	re Clay (%)		9.2	9.2 31.3	9.2 31.3 36.6	9.2 31.3 36.6 42.7	9.2 31.3 36.6 42.7 57.4	9.2 31.3 36.6 42.7 57.4 4.7	9.2 31.3 36.6 42.7 57.4 4.7 21.5	9.2 31.3 36.6 42.7 57.4 4.7 21.5 21.5 38.3	9.2 31.3 36.6 57.4 4.7 21.5 38.3 38.3	9.2 31.3 36.6 42.7 57.4 4.7 21.5 38.3 38.3 31.4 44.5	9.2 9.2 31.3 36.6 42.7 57.4 4.7 21.5 31.4 44.5 31.4 7.6	9.2 9.2 36.6 4.7 4.7 21.5 38.3 38.3 31.4 44.5 33.3 31.4 33.6 33.6	9.2 9.2 31.3 36.6 42.7 42.7 42.7 42.7 21.5 21.5 38.3 38.3 38.3 31.4 44.5 7.6 7.6 39.6 49.3	9.2 9.2 36.6 4.7 57.4 4.7 21.5 38.3 38.3 38.3 38.3 31.4 44.5 7.6 39.6 47.3 39.6							
	Moistur (%)		-	+ 4	τ 4 m	t − 4 ∞ ∞	4 4 4 4	+ + 0 0 + +	F 4 00 8 F F F	- 7 m w w 7	+ + <td>+ + + + + + + + *<td>+ + 6<td>+ + 6 6 - + + 6<td>0 0 0 0 0 0 0 0</td><td>+ + - ++ + + +</td></td></td></td>	+ + + + + + + + * <td>+ + 6<td>+ + 6 6 - + + 6<td>0 0 0 0 0 0 0 0</td><td>+ + - ++ + + +</td></td></td>	+ + 6 <td>+ + 6 6 - + + 6<td>0 0 0 0 0 0 0 0</td><td>+ + - ++ + + +</td></td>	+ + 6 6 - + + 6 <td>0 0 0 0 0 0 0 0</td> <td>+ + - ++ + + +</td>	0 0 0 0 0 0 0 0	+ + - ++ + + +							
	LD		10	10	10 20 30	10 20 30 70	10 20 30 70 100	10 20 30 70 100	10 20 30 70 100 10 20	10 20 70 100 10 20 30	10 20 70 100 100 20 30 70	10 20 30 70 100 20 30 30 70	10 20 70 70 100 20 30 70 100	10 20 70 100 100 20 30 70 70 70 70 20	10 20 20 70 100 20 20 70 100 100 100 30 30	10 20 20 20 20 20 70 70 100 100 20 20 20							
	du di		0	0	0 10 20	0 10 30	0 20 30 70	0 10 20 30 70 0	0 20 30 70 0	0 10 20 70 70 10 20	0 10 20 70 70 20 30	0 10 70 70 70 70 70	0 10 20 70 10 20 20 30 70 0	0 10 20 70 70 20 70 70 70	0 10 20 20 20 20 20 20 20 20 20 20 20 20 20	0 10 20 20 70 20 20 70 20 20 20 30 20 30							
	Rep San		4 A	4 A 4 B	4 A A 4 C B	4 4 4 4 C B D C	4 4 4 4 4 4 A 4 E D 6 4 4 E	2 A 4 A 2 A 2 A 4 A 2 A 4 A 4 A 4 A 4 A	2 A A A A A A A A A A A A A A A A A A A	2 2 4 4 4 4 4 4 4 7 2 5 4 4 4 6 C 8 4 4 6 C 8 7 6 6 6 6 7 6 7 6 7 7 7 7 7 7 7 7 7 7	2 2 4 4 4 4 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 2 2 4 4 4 4 A C C C C C D A E D C C B A E D C C B A E D C C B A E D C C C C C C C C C C C C C C C C C C	2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2 2 2 2 2 4 4 4 4 8 A 8 9 A 10 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							
	Landuse R	m Hills	m Hills L	m Hills L L	m Hils	H Hills	Hills L L L L L L	S S	HH Nition Source	a Hills S S S C C C C C C C C	Hill Sin so	Marine Serence constraints Serence constraints	HE Nition of the second	H H H H H H H H H H H H H H H H H H H	H L L L L L L L L L L L L L L L L L L L	HE E							
	Locat	Wittenoo	Wittenool WH	Wittenoor WH WH	Wittenool WH WH WH	Wittenoor WH WH WH	Wittenool WH WH WH WH	Wittenooi WH WH WH WH WH	Wittenool WH WH WH WH WH	Wittenoo WH WH WH WH WH WH	Wittenool WH WH WH WH WH WH WH	Wittenoor WH WH WH WH WH WH WH	Wittenoor WH WH WH WH WH WH WH WH	Wittenoor WH WH WH WH WH WH WH WH	Wittenoor WH WH WH WH WH WH WH WH WH	Wittenoor WH WH WH WH WH WH WH WH WH WH							
								ш	xchanges	uble Cati	SUO					Saturat	ion extra	ct					
---------	---------	-----	------	----	-----	-----------------	---------------	--------------------------	-------------------------	-------------------------	-----------------------	-----------------------	------------------------	------------------------	-----------------------	---------	---------------	--------------	--------------	--------------	-------------	-------------	------
Locat	Landuse	Rep	Samp	D	LD	Moisture (%)	Clay (%) (CEC cmol(+) (/kg)	Ca cmol(+) (/kg)	Mg cmol(+) (/kg)	Na cmol(+) /kg)	K (cmol(+) /kg)	AI (cmol(+) /kg)	Mn (cmol(+) /kg)	H ₂ 0 %	Hd	ECe (mS/m)	Ca (me/L)	Mg (me/L)	Na (me/L)	K (me/L)	S (me/L)	SAR
Condina	s																						
00		-	A	0	10	0	1.2		1.45	0.29	0.03	0.07	0.11	0.02									
00	_	-	в	10	20	0	2.0		0.4	0.1	0.02	0.05	0.17	<0.02									
00		-	ပ	20	30	0	1.6		0.22	0.06	<0.02	0.04	0.14	<0.02									
CO	_	-	D	30	40	-	2.4		0.36	0.1	0.02	0.06	0.16	<0.02									
CO		-	ш	40	70	10	46.5	12	3.67	4.15	0.4	0.84											
00		-	ш	70	100	10	39.9	Ħ	3.43	4.08	0.5	0.87											
CO	S	-	A	0	10	0	1.3		1.87	0.45	0.04	0.06	0.1	0.04									
CO	S	-	в	10	20	0	1.6		0.63	0.15	0.02	0.03	0.14	<0.02									
00	S	-	c	20	30	0	1.6		0.4	0.09	0.02	0.02	0.05	<0.02									
00	S		D	30	40	0																	
CO	S	-	ш	40	60	0	5.5		0.97	0.49	0.07	0.07	0.04	<0.02									
CO	S	-	ш	60	06	-	43.5	Ŧ	2.18	5.02	1.3	0.49	0	0									
00		-	A	0	10	0	1.2		1.46	0.35	0.05	0.06	0.05	<0.02									
00			В	10	20	0	1.0		0.91	0.33	0.06	0.06	0.06	<0.02									
00		-	ပ	20	30	0	1.0		0.45	0.2	0.06	0.04	0.03	<0.02									
00		-	D	30	55	0	1.7		0.28	0.23	0.07	0.04											
00		-	ш	55	65	0	2.4		0.43	0.32	0.07	0.07											
00		-	ш	65	95		49.1		1.53	6.37	1.97	0.4	<0.02	<0.02									
CO			ш	65	95	0			13	0.013	19	6200	5.08	9.56	87	0.008	<10	3700	3.26	2.86	0.38		7.16

Bulk Density by Average Depth of Sample

	Page No.
Northampton	137
Badgingarra	137
Brookton	138
Mullewa	138
Merredin	139
Newdegate (deep)	139
Newdegate (shallow)	140
Wittenoom Hills	140
Condingup	141

Northampton

Badgingarra

Brookton

Mullewa

Merredin

Newdegate (deep)

Newdegate (shallow)

Wittenoom Hills

Condingup

Organic Carbon (following Walkley and Black, %) in Fine Earth Fraction by Average Sample Depth

	Page No.
Northampton	145
Badgingarra	145
Brookton	146
Mullewa	146
Merredin	147
Newdegate (deep)	147
Newdegate (shallow)	148
Wittenoom Hills	148
Condingup	149

Northampton

Badgingarra

Brookton

Mullewa

Merredin

Newdegate (deep)

Newdegate (shallow)

Wittenoom Hills

Condingup

Cumulative Organic Carbon (W & B, as t/ha) in Fine Earth Fraction by Mid Sample Depth

	Page No.
Northampton	153
Badgingarra	153
Brookton	154
Mullewa	154
Merredin	155
Newdegate (deep)	155
Newdegate (shallow)	156
Wittenoom Hills	156
Condingup	157

Northampton

Badgingarra

Brookton

Mullewa

Merredin

Newdegate (deep)

Newdegate (shallow)

Wittenoom Hills

Condingup

Organic Carbon (W & B) in Fine Earth Fraction by Average Sample Depth

Paired Sites Uncleared vs Report P7 Soil Data (Griffin and Schoknecht, 2000)

	Page No.
Northampton	161
Badgingarra	161
Brookton	162
Mullewa	162
Merredin	163
Newdegate (deep)	163
Newdegate (shallow)	164
Wittenoom Hills	164
Condingup	165

Northampton

Badgingarra

Brookton

Mullewa

Merredin

Newdegate (deep)

Newdegate (shallow)

Wittenoom Hills

Condingup

Coarse Organic Matter (wt %) of Whole Soil by Mid Sample Depth

Plots expressed as ln (wt %), e.g. ln (1.0%) = 1.0, ln (2.0%) = 1.4, ln (3.0%) = 1.7, ln (8.0%) = 2.8

	Page No.
Northampton	169
Badgingarra	169
Brookton	170
Mullewa	170
Merredin	171
Newdegate (deep)	171
Newdegate (shallow)	172
Wittenoom Hills	172
Condingup	173

Northampton

Badgingarra

Mullewa

Merredin

Newdegate (deep)

Newdegate (shallow)

Organic Carbon (W&B%) of Fine Earth Fraction by % Coarse Organic Matter of Whole Soil

	Page No.
Northampton	177
Badgingarra	177
Brookton	178
Mullewa	178
Merredin	179
Newdegate (deep)	179
Newdegate (shallow)	180
Wittenoom Hills	180
Condingup	181

Northampton

Badgingarra

Brookton

Mullewa

Merredin

Newdegate (deep)

Newdegate (shallow)

Condingup

Organic Carbon (W & B, %) of Coarse Fragments by Mid Sample Depth, Compared to Organic Carbon (W & B, %) of Fine Earth Fraction

Series with "cf" suffix are organic carbon data from coarse mineral fragments. Other series are organic carbon from fine earth fraction.

	Page No.
Northampton	185
Badgingarra	185
Brookton	186
Mullewa	186
Merredin	187
Newdegate (deep)	187
Newdegate (shallow)	188
Wittenoom Hills	188
Condingup	189

Northampton

Badgingarra

Brookton

Mullewa

Merredin

Newdegate (deep)

Newdegate (shallow)

Condingup

Estimations of Cumulative Whole Soil Organic Carbon (t/ha) by Depth

	Page No.
Northampton	193
Badgingarra	193
Brookton	194
Mullewa	194
Merredin	195
Newdegate (deep)	195
Newdegate (shallow)	196
Wittenoom Hills	196
Condingup	197

Northampton

Badgingarra

Brookton

Mullewa

Merredin

Newdegate (deep)

Newdegate (shallow)

Condingup

Cumulative Organic Carbon in Fine Earth Fraction as a Percentage of the Estimates of Cumulative Whole Soil Organic Carbon (t/ha) by Mid Sample Depth

	Page No.
Northampton	201
Badgingarra	201
Brookton	202
Mullewa	202
Merredin	203
Newdegate (deep)	203
Newdegate (shallow)	204
Wittenoom Hills	204
Condingup	205

Northampton

Badgingarra

Brookton

Mullewa

Merredin

Newdegate (deep)

Newdegate (shallow)

Wittenoom Hills

Condingup
APPENDIX 14

Percentage of Total Organic Carbon in Each Fraction of Each Sample Plotted by Average Sample Depth

The suffixes – FE, -COM, -CMF denote fine earth, coarse organic matter and coarse mineral fraction respectively.

TABLE OF CONTENTS

	Page No.
Northampton, long cleared	209
Northampton, short cleared	209
Northampton, uncleared	210
Badgingarra, long cleared	210
Badgingarra short cleared	211
Badgingarra, uncleared	211
Brookton, long cleared	212
Brookton, uncleared	212
Mullewa, long cleared	213
Mullewa, short cleared	213
Mullewa, uncleared	214
Merredin, long cleared	214
Merredin, short cleared	215
Merredin, uncleared	215
Newdegate (deep), long cleared	216
Newdegate (deep), short cleared	216
Newdegate (deep), uncleared	217
Newdegate (shallow), long cleared	217
Newdegate (shallow), short cleared	218
Newdegate (shallow), uncleared	218
Wittenoom Hills, long cleared	219
Wittenoom Hills, short cleared	219
Wittenoom Hills, uncleared	220
Condingup, long cleared	220
Condingup, short cleared	221
Condingup, uncleared	221

Northampton, short cleared

Northampton, uncleared

Badgingarra, long cleared

Badgingarra, uncleared

Brookton, long cleared

Brookton, uncleared

Mullewa, short cleared

Mullewa, uncleared

Merredin, long cleared

Merredin, uncleared

Newdegate (deep), short cleared

Newdegate (shallow), long cleared

Newdegate (shallow), uncleared

Wittenoom Hills, short cleared

Condingup, long cleared

Condingup, uncleared

APPENDIX 15

Organic Carbon (W & B, %) of Coarse Fragments by Depth, Compared to Organic Carbon (W & B, %) of Fine Earth Fraction

Series with "cf" suffix are organic carbon data from coarse mineral fragments. Other series are organic carbon from fine earth fraction.

TABLE OF CONTENTS

	Page No.
Northampton	225
Badgingarra	225
Brookton	226
Mullewa	226
Merredin	227
Newdegate (deep)	227
Newdegate (shallow)	228
Wittenoom Hills	228
Condingup	229

Northampton

Badgingarra

Brookton

Mullewa

Merredin

Newdegate (deep)

Newdegate (shallow)

Wittenoom Hills

APPENDIX 16

EC (1:5, mS/m) of Fine Earth Fraction by Average Sample Depth

TABLE OF CONTENTS

	Page No.
Northampton	233
Badgingarra	233
Brookton	234
Mullewa	234
Merredin	235
Newdegate (deep)	235
Newdegate (shallow)	236
Wittenoom Hills	236
Condingup	237

Northampton

Badgingarra

Brookton

Mullewa

Merredin

Newdegate (deep)

Newdegate (shallow)

Wittenoom Hills

Condingup

APPENDIX 17

pH (1:5 CaCl2) of Fine Earth Fraction by Average Sample Depth

TABLE OF CONTENTS

	Page No.
Northampton	241
Badgingarra	241
Brookton	242
Mullewa	242
Merredin	243
Newdegate (deep)	243
Newdegate (shallow)	244
Wittenoom Hills	244
Condingup	245

Northampton

Badgingarra

Brookton

Merredin

Newdegate (deep)

Newdegate (shallow)

Condingup

Total P (ppm) of Fine Earth Fraction by Average Sample Depth

	Page No.
Northampton	249
Badgingarra	249
Brookton	250
Mullewa	250
Merredin	251
Newdegate (deep)	251
Newdegate (shallow)	252
Wittenoom Hills	252
Condingup	253

Northampton

Badgingarra

Brookton

Merredin

Newdegate (deep)

Newdegate (shallow)

Condingup

Total N (ppm) of Fine Earth Fraction by Average Sample Depth

	Page No.
Northampton	257
Badgingarra	257
Brookton	258
Mullewa	258
Merredin	259
Newdegate (deep)	259
Newdegate (shallow)	260
Wittenoom Hills	260
Condingup	261

Northampton

Badgingarra

Brookton

Merredin

Newdegate (deep)

Newdegate (shallow)

Condingup

Total K (ppm) of Fine Earth Fraction by Average Sample Depth

	Page No.
Northampton	265
Badgingarra	265
Brookton	266
Mullewa	266
Merredin	267
Newdegate (deep)	267
Newdegate (shallow)	268
Wittenoom Hills	268
Condingup	269

Northampton

Badgingarra

Brookton

Merredin

Newdegate (deep)

Newdegate (shallow)

Condingup

Extractable AI (ppm, in 1:5 CaCl₂) of Fine Earth Fraction by Average Sample Depth

	Page No.
Brookton	273
Mullewa	273
Merredin	274
Condingup	274

Brookton

Mullewa

Merredin

Condingup

Sum of Cations (me%) of Fine Earth Fraction by Average Sample Depth

	Page No.
Cation Exchange Capacity (CEC) vs sum of cations	277
Northampton	277
Badgingarra	278
Brookton	278
Mullewa	279
Merredin	279
Newdegate (deep)	280
Newdegate (shallow)	280
Wittenoom Hills	281
Condingup	281

Cation Exchange Capacity (CEC) vs sum of cations

Northampton

Badgingarra

Brookton

Mullewa

Merredin

Newdegate (deep)

Newdegate (shallow)

Wittenoom Hills

Condingup

Series 1 Publications

Set the framework for development of the National Carbon Accounting System (NCAS) and document initial NCAS-related technical activities (see http://www.greenhouse.gov.au/ncas/ publications).

Series 2 Publications

Provide targeted technical information aimed at improving carbon accounting for Australian land based systems (see http://www.greenhouse.gov.au/ncas/publications).

Series 3 Publications

Detail protocols for biomass estimation and the development of integrated carbon accounting models for Australia (see http://www.greenhouse.gov.au/ncas /publications). Of particular note is Technical Report No.

28. The FullCAM Carbon Accounting Model: Development, Calibration and Implementation for the National Carbon Accounting System.

Series 4 Publications include:

- 34. Paired Site Sampling for Soil Carbon Estimation New South Wales.
- 35. Emission Sources of Nitrous Oxide from Australian Agriculture and Mitigation Options.
- 36. Integrated Soils Modelling for the National Carbon Accounting System.
- 37. Paired Site Sampling for Soil Carbon Estimation Queensland.
- 38. Paired Site Sampling for Soil Carbon Estimation Western Australia.

The National Carbon Accounting System provides a complete accounting and forecasting capability for human-induced sources and sinks of greenhouse gas emissions from Australian land based systems. It will provide a basis for assessing Australia's progress towards meeting its international emissions commitments.